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analytic tool. Extracting signal from the background noise, however, poses significant challenges. In this
article, we model the noise part of a spectrum as an autoregressive, moving average (ARMA) time series
with innovations given by a generalized gamma distribution with varying scale parameter but constant
shape parameter and exponent. This enables us to classify peaks found in actual spectra as either noise
or signal using a reasonable criterion that outperforms a standard threshold criterion.
eneralized gamma distribution
atrix-assisted laser desorption/ionization

. Introduction

Matrix-assisted laser desorption/ionization Fourier transform
on cyclotron resonance mass spectrometry (MALDI FT-ICR MS) is
technique for high mass-resolution analysis of substances that is

apidly gaining popularity as an analytic tool in proteomics. Typ-
cally in MALDI FT-ICR MS, a sample (the analyte) is mixed with

chemical that absorbs light at the wavelength of the laser (the
atrix) in a solution of organic solvent and water. The resulting

olution is then spotted on a MALDI plate and the solvent is allowed
o evaporate, leaving behind the matrix and the analyte. A laser is
red at the MALDI plate and is absorbed by the matrix. The matrix
ecomes ionized and transfers charge to the analyte, creating the

ons of interest (with fewer fragments than would be created by
irect ablation of the analyte with a laser). The ions are guided with
quadrupole ion guide into the ICR cell where the ions cyclotron

n a magnetic field. While in the cell, the ions are excited and
on cyclotron frequencies are measured. The angular velocity, and
herefore the frequency, of a charged particle is determined solely
y its mass-to-charge ratio. Using Fourier analysis, the frequencies
an be resolved into a sum of pure sinusoidal curves with given
requencies and amplitudes. The frequencies correspond to the
ass-to-charge ratios and the amplitudes correspond to the con-
entrations of the compounds in the analyte. FT-ICR MS is known
or high mass resolution, with separation thresholds on the order
f 10−3 Daltons (Da) or better [1,2].

∗ Corresponding author.
E-mail address: don.barkauskas@curesearch.org (D.A. Barkauskas).

003-2670/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2009.06.064
© 2009 Elsevier B.V. All rights reserved.

The spectra analyzed in this article were recorded on an external
source MALDI FT-ICR instrument (HiResMALDI, IonSpec Corpora-
tion, Irvine, CA) equipped with a 7.0 T superconducting magnet and
a pulsed Nd:YAG laser 355 nm. In addition to hundreds of spectra
generated as described above for a cancer study [3] using human
blood serum as the analyte, we generated 56 spectra using neither
analyte nor matrix. We will refer to the latter category of spectra
as “noise spectra” and use them in Sections 2 and 3 to develop our
model, then apply the model to a spectrum with known contents
in Section 4.

We find that an autoregressive, moving average (ARMA) time
series with innovations given by a generalized gamma distribution
can closely model the properties of the noise spectra, and that this
representation is useful for accurately identifying real substances
in spectra produced using analyte. The modeling assumptions
developed in this article are implemented in the R package FTI-
CRMS, available either from the Comprehensive R Archive Network
(http://www.r-project.org/) or from the first author.

2. Methods

2.1. Description of data

A typical noise spectrum is shown in Fig. 1 with frequency in
kilohertz (kHz) plotted on the horizontal axis. (In the mass spec-

trometry literature, it is more usual to seem/z—the mass-to-charge
ratio—on the horizontal axis, but the actual process of measurement
uses equally spaced frequencies, and them/z values are computed
using one of several non-linear transformations on the frequencies
[4]. Thus, the spectrum pictured in Fig. 1 is how it appears after the

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:don.barkauskas@curesearch.org
http://www.r-project.org/
dx.doi.org/10.1016/j.aca.2009.06.064
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ig. 1. Typical noise spectrum. A MALDI FT-ICR spectrum produced without matrix o
f 41.21 and 42.21 kHz which extend upward to intensities of approximately 222.7 a

ast Fourier transform is applied to the measured data.) The thick
pike at a frequency of roughly 40 kHz is actually two peaks at fre-
uencies 41.21 and 42.21 kHz which extend upward to intensities
f approximately 222.7 and 95.4, respectively, and are apparently

nstrumental noise—they appear in all 56 noise spectra at roughly
he same spots and have no isotope peaks. In the analysis that fol-
ows, we set the values of the spectra at frequencies corresponding
o these two peaks to be missing.

.2. Properties of noise spectra

We start by considering two striking properties of the noise

pectra. The first property is the special forms of the sample
utocorrelation function (ACF) and sample partial autocorrelation
unction (PACF) of the noise spectra; Fig. 2 displays the graphs of
he sample ACF and sample PACF of the noise spectrum from Fig. 1.
tarting with lag 7, the sample ACF is nearly constant at roughly

ig. 2. Sample ACF and sample PACF of typical noise spectrum. The sample autocor-
elation function (top) and sample partial autocorrelation function (bottom) through
ag 50 of the noise spectrum from Fig. 1.
te. The spike extending off the top of the picture is actually two peaks at frequencies
.4, respectively.

0.0613. The sample PACF, on the other hand, oscillates between pos-
itive and negative values before decaying to a small positive value.
As we show in Section 2.3, the sample ACF enables us to get infor-
mation not only about the baseline but also about the coefficients to
use in the ARMA representation of the spectrum. The sample PACF
will be useful for evaluating the final ARMA model for accuracy. The
second property comes from looking at the sample “homogenized”
cumulants �̂′

1, �̂
′
2, . . . of the spectrum. (The sample homogenized

cumulants of a set of data are related to the mean, variance, skew-
ness, kurtosis, etc., of the data and will be defined precisely in
Section 2.4, Eq. (5).) Fig. 3 displays scatterplots of the running sam-
ple homogenized cumulants (with bandwidth 4001 points—other
bandwidths give similar plots) of the noise spectrum from Fig. 1.
It is clear that the first three sample homogenized cumulants have
strong relationships. As we show in Section 2.4, this enables us to get
information about the proper parameters to use in the generalized
gamma distribution for the innovations in the ARMA representation
of the spectrum.

2.3. Analysis of the ACF

The sample ACF r̂k at lag k of a realization {yt}nt=1 of a time series
{Yt}nt=1 is defined by

r̂k =

n∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

n∑
t=1

(yt − ȳ)2

, (1)

where ȳ is the sample mean. This is usually defined for stationary
time series, in which (among other criteria) the means {�t} of the
underlying random variables {Yt} are assumed to be constant. How-
ever, estimating the underlying means for a noise spectrum by some
method (running means, running medians, etc.) clearly shows that
they are not constant.

Thus, suppose that Yt∼(�t,�2
t ) with known means {�t}nt=1 and

suppose that the correlation between Yt and Yt−k is given by �̃k
(independent of t). Then, we have

�̃k = E{(Yt −�t)(Yt−k −�t−k)}√
E{(Yt −�t)2} ·

√
E{(Yt−k −�t−k)2}

n∑ n∑ (2)
�̃k
t=1

(yt −�t)2 ≈
t=k+1

(yt −�t)(yt−k −�t−k),

where E(·) is the expected value operator. We subtract the right-
hand side of Eq. (2) from the left and add the result to the numerator
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ig. 3. Sample homogenized cumulants of typical noise spectrum. Running sample
ection 2.4 for details.

n Eq. (1). This gives us

k ≈

n∑
t=k+1

(yt − ȳ)(yt−k − ȳ) + �̃k
n∑
t=1

(yt −�t )2 −
n∑

t=k+1

(yt −�t )(yt−k −�t−k)

n∑
t=1

(yt − ȳ)2

. (3)

e can use Eq. (3) to approximate r̂k when the underlying correla-
ions �̃k are approximately zero. Write Yt = �t + εt , where Eεt = 0;
t and εs are independent for all s, t; and k is large enough such

hat Eεtεt−k = 0 but k is small compared to n. We then get

r̂k ≈

n∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

n∑
t=1

(yt − ȳ)2

≈

n∑
t=k+1

(�t + εt − �̄)(�t−k + εt−k − �̄)

n∑
t=1

(yt − ȳ)2

≈

n∑
t=k+1

(�t − �̄)(�t−k − �̄) +
n∑

t=k+1

εtεt−k

(4)
n∑
t=1

(yt − ȳ)2

r̂k ≈ ��(k) · Var({�t})
Var({yt}) ,
genized cumulants (bandwidth 4001 points) for the noise spectrum from Fig. 1. See

where ��(k) is the autocorrelation of the means at lag k, which for
small k should be close to 1 if the mean is slowly changing. Sim-
ilar calculations show that Eq. (4) also holds if Yt = �t(1 + εt)—so
the error is proportional to the mean—which will actually be the
case for our spectra. In particular, for the noise spectrum pictured
in Fig. 1—using running means with bandwidth 4001 points to esti-
mate {�t}—we get Var({�t}) ≈ 3.86, Var({yt}) ≈ 62.0, and ��(k) >
0.999 for all k ≤ 100. These values give an estimate of r̂k ≈ 0.0622,
which closely matches the eventual value 0.0613 of the ACF in
Fig. 2(a).

Furthermore, we note that the sample ACF pictured in Fig. 2(a)
reaches the estimated value of 0.0622 for k ≥ 7 but is larger than
that for k ≤ 6. That suggests that the underlying correlations �̃k are
nonzero for k ≤ 6 and zero for k ≥ 7. This, along with the rapidly
decaying sample PACF, indicates that an MA(6) process would be
a reasonable model for the spectrum. However, as we show in the
next section, a general ARMA process fits the spectrum much better.

2.4. Analysis of the cumulants

The cumulants �n(X) of a random variable X are related to the
coefficients of the Taylor expansion of log(EeitX ) via

log(EeitX ) =
∞∑
n=1

�n(X) · (it)n

n!
.

The most important property that cumulants have is that

for independent random variables X and Y, we have �n(X + Y) =
�n(X) + �n(Y) for all n ≥ 1. (Contrast this with the central moments,
where this property holds only for n = 1,2,3.) The first cumu-
lant is equivariant under translation (i.e., �1(X + c) = �1(X) + c for
any constant c), and the higher order cumulants are invariant
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nder translation (i.e., �n(X + c) = �n(X) for n ≥ 2). In addition, the
umulants are homogeneous of degree n (i.e., �n(cX) = cn · �n(X)
or all n). Finally, we have �1(X) = EX , �2(X) = Var(X), and �3(X) =
{(X − EX)3}, the mean and first two nonzero central moments of
. (This relationship does not hold for higher order cumulants and
entral moments.)

For ease of presentation, we also introduce “homogenized
umulants” �′

n(X) as

′
n(X) = sign{�n(X)} · |�n(X)|1/n, (5)

hich are translation-equivariant for n = 1, translation-invariant
or n ≥ 2, and homogeneous of degree 1 for all n. (It is these quan-
ities, not the actual cumulants, that are plotted in Fig. 3.)

For the remainder of this article, we will use capital letters to
enote random variables and corresponding lower case letters to
enote realizations of those random variables. Thus, for example,
he spectrum pictured in Fig. 1 is {yt} for the time series {Yt}. The val-
es of the sample cumulants and sample homogenized cumulants
estimated from data) will be denoted by �̂n and �̂′

n, respectively.
As Fig. 3 shows, �̂′

2(Yt)/�̂′
1(Yt), �̂′

3(Yt)/�̂′
1(Yt), and �̂′

3(Yt)/�̂′
2(Yt)

re all nearly constant across the entire spectrum. Let {Ỹt} be the
e-trended series obtained from {Yt} by dividing by the mean: Ỹt =
t/�t . Then {Ỹt} should have a constant mean of 1 and constant
ariance, so it would be a stationary time series if, in addition, the
utocorrelations did not depend on t. We checked this assumption
y estimating �̂t as a running mean with bandwidth 4001 points
nd considering the spectra given by y′

t = yt/�̂t . We divided each
f these into 486 groups of 2000 points. For each spectrum we then
alculated first six lags of the sample ACF for each of the 486 groups
f points (denoted by �̂) and compared the resulting values to the
rst six lags of the sample ACF of the whole spectrum (denoted by
). From a standard result in time series analysis (see, e.g., Shumway
nd Stoffer ([5], Theorem A.7)), we know that �̂∼AN(�,W/n), where
is the length of the time series and the covariance matrix W is

omputable from the full ACF of the actual time series {Yt}. Using the
ample ACF of the entire spectrum {yt} to estimate � and W, for each
et of 2000 points we computed (�̂ − �)′(W/2000)−1(�̂ − �), which
nder the null hypothesis of stationarity would be distributed as�2

6.
t the 0.05 level of significance, we find that on average (28/486) ≈
.058 of the sets of points have a significantly different sample ACF
han the entire spectrum—very close to the number expected under
he null hypothesis.

Thus, there is good evidence that the de-trended series {Ỹt} is,
n fact, stationary. If {Ỹt} arises as a causal ARMA process, then we
an write

�n(Ỹt) = �n

( ∞∑
k=0

 kXt−k

)

=
∞∑
k=0

 nk�n(Xt−k)

= mn�n(Xt)
�′
n(Ỹt) = sign(mn)|mn|1/n�′

n(Xt),

here mn ≡
∑∞

k=0 
n
k

. In particular, the innovations {Xt} will also
ave proportional cumulants.

Thus, we should look for a distribution for the innovations for
hich the second and third cumulants remain proportional to the
ean as the mean varies. One such distribution is given by the gen-

ralized gamma distribution with exponent ˛, shape parameter ˇ,
1/˛
nd scale parameter �t : Xt ∼	(ˇ, �t). This distribution has prob-

bility density function given by

˛,ˇ,�t (x) = ˛�−ˇ
t x

˛ˇ−1 exp(−x˛/�t)
	(ˇ)

, x ≥ 0, (6)
ica Acta 648 (2009) 207–214

where	(ˇ) =
∫ ∞

0
uˇ−1e−u du is the standard gamma function. Easy

calculations show that

�1(Xt) = �1/˛
t

	(ˇ)
·	(ˇ + 1

˛
)

�2(Xt) = �2/˛
t

	2(ˇ)
· {	(ˇ)	(ˇ + 2

˛
) −	2(ˇ + 1

˛
)}

�3(Xt) = �3/˛
t

	3(ˇ)
· {	2(ˇ)	(ˇ + 3

˛
) − 3	(ˇ)	(ˇ + 1

˛
)	(ˇ

+ 2
˛

) + 2	3(ˇ + 1
˛

)}

In particular, note that �′
2(Xt)/�′

1(Xt), �′
3(Xt)/�′

1(Xt), and
�′

3(Xt)/�′
2(Xt) are functions of ˛ and ˇ only and do not depend on

�t . By the homogeneity and additivity properties of cumulants, the
homogenized cumulants for Yt will have the same property. Thus,
we can use the ratios estimated from the data to solve for ˛ and ˇ,
then use (the known values of) {�t} to find {�t}.

In order to do this, we first need to find the causal representation
of the ARMA process for the noise spectrum. We start by estimat-
ing the order of the process and the coefficients by looking at {y′

t}.
Using the ARMA-fitting function arima in R (which does maximum-
likelihood estimation), we tried all possible ARMA(p,q) models for
p+ q ≤ 7 and chose the one that maximized the modified Akaike’s
information criterion (AICC ) of [6]:

AICC = −2 ln L + 2(p+ q+ 1)n
n− p− q− 2

,

where L is the log-likelihood and n is the number of data points. The
best model using this version of AIC was an ARMA(1,5) process:

Ỹt = 
1Ỹt−1+Xt+�1Xt−1+�2Xt−2+�3Xt−3+�4Xt−4 + �5Xt−5. (7)

For such a model, the causal representation

Ỹt =
∞∑
k=0

 kXt−k

has coefficients given recursively by

 0 = 1
 n+1 = 
1 n + �n+1.

Note that since �k = 0 for k ≥ 6, we have  n+1 = 
1 n for n ≥ 5.
Thus, we can get a closed form formn:

mn =
∞∑
k=0

 nk

=
4∑
k=0

 nk +
∞∑
k=5

(
k−5
1  5)

n

=
4∑
k=0

 nk + n5
∞∑
j=0

(
n1)j

=
4∑
k=0

 nk +  n5
1 − 
n1

;

and we can use the recursion to write  0, . . . , 5 in terms of

1, �1, . . . , �5.

It should be noted that the arima command in R assumes nor-
mal innovations, and therefore there might be some bias in our

estimation of the ARMA coefficients. However, as Li and McLeod
[7] observed, for large sample sizes the normal assumption intro-
duces an extremely small amount of bias. We confirmed this by
generating 50 spectra using the ARMA(1,5) model with generalized
gamma innovations and mean derived from the running means
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Table 1
Estimated values of parameters averaged over the 56 noise spectra.

Parameters � �


1 0.21976 0.00900
�1 1.64359 0.00882
�2 1.40146 0.01641
�3 0.76632 0.01566
�4 0.25964 0.00927
�5 0.04348 0.00290

r21 1.11748 0.00211
r 1.18650 0.00475
r
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31

32 1.06225 0.00273
4.67444 0.13633
0.07967 0.00263

ith bandwidth 4001 points of the noise spectrum in Fig. 1. We
hen compared the original ARMA coefficients to those obtained
y dividing each simulated spectrum by its running means with
andwidth 4001 points and applying the arima command in R. The
verage absolute bias was<1% for each of the six coefficients, and
ach of the six 95% confidence intervals as well as the joint 95%
onfidence interval contained the original parameters. Thus, any
ias in the estimation of the ARMA coefficients introduced by not
ssuming generalized gamma innovations is probably minimal.

We can then use the ARMA coefficients 
1, �1, . . . , �5 along
ith the running cumulants of the spectrum to estimate the

arameters ˛ and ˇ. Let rjk be the least-squares estimate of

m−1/j
j

�̂′
j
(Yt)}/{m−1/k

k
�̂′
k
(Yt)}. In Fig. 3, it appears that r21 and r32

re the most consistent across the range of the spectrum, so we
umerically solve the following system for ˛ and ˇ:

21 =
√
	(ˇ)	(ˇ + 2/˛) −	2(ˇ + 1/˛)

	(ˇ + 1/˛)
(8)

32 =
3
√
	2(ˇ)	(ˇ + 3/˛) − 3	(ˇ)	(ˇ + 1/˛)	(ˇ + 2/˛) + 2	3(ˇ + 1/˛)√

	(ˇ)	(ˇ + 2/˛) −	2(ˇ + 1/˛)
(9)

ote that r21 is an estimate of the coefficient of variation of the
nnovations, and r32 is an estimate of the cube root of the skewness
f the innovations. The scale parameter �t is then given by

t =
{

�t ·	(ˇ)
m1 ·	(ˇ + 1/˛)

}˛
.

. Results

We applied the methods from Section 2 to each of the 56 noise

pectra. The values of the ARMA coefficients 
1, �1, . . . , �5 esti-
ated from {Ỹt}; the homogenized cumulant ratios r21, r31, and

32 estimated using bandwidths of 4001 points; and the exponent
nd shape parameters ˛ and ˇ estimated from Eqs. (8) and (9) are
emarkably consistent across the 56 spectra, as shown in Table 1.

Fig. 4. Typical simulated spec
Fig. 5. Sample PACFs of simulated spectra. The sample partial autocorrelation func-
tions through lag 50 of spectra simulated using the ARMA(1,5) model (top) and an
MA(6) model (bottom). Compare to the bottom part of Fig. 2.

(Note that the standard deviation of the estimate of r31 is 75% larger
than either of the standard deviations of the estimates of r21 and
r32, which serves as confirmation the latter two quantities are the
better ones to use for estimating ˛ and ˇ.) Fig. 4 shows (plotted on
the same scale as Fig. 1) a spectrum simulated (with arima.sim
in the R software package) using the average ARMA coefficients,
exponent, and shape parameter from Table 1 and {�t} derived from
{�t} calculated as the running means with bandwidth 4001 points
of the spectrum in Fig. 1. Note the remarkable similarity between
the two graphs.

In addition, we see that the sample ACF and sample PACF of the
simulated spectrum match those of the actual noise spectrum quite
well. The sample ACF of a spectrum simulated from an MA(6) model
also closely matches the sample ACF of the noise spectrum, but the
sample PACFs are noticeably different. Fig. 5 shows the sample PACF

of the simulated spectrum from Fig. 4 along with the sample PACF
of a spectrum simulated from an MA(6) model. It is clear that the
sample PACF of the MA(6) model does not decay nearly as quickly as
the sample PACF of the noise spectrum, but the sample PACF of the
spectrum simulated from the ARMA(1,5) model matches very well.

trum. Compare to Fig. 1.



212 D.A. Barkauskas et al. / Analytica Chimica Acta 648 (2009) 207–214

F
p

e
o
c
s
s
n
i
s
c
p
o
o
c
f
m
a
i
a
w
s

4

s
(

Table 2
Estimated quantiles of the ARMA(1,5) distribution

Est. �-Equivalent

4 4.25 4.5 4.75 5

k̄ 3.5059 3.6546 3.7996 3.9377 4.0708
s(k) 0.0087 0.0138 0.0229 0.0364 0.0617
ig. 6. Parabolic peak. A typical peak in a MALDI FT-ICR spectrum is approximately
arabolic.

Another result of the ARMA representation of the noise is the
xplanation of an interesting phenomenon that had been previ-
usly observed in MALDI FT-ICR spectra. Barkauskas et al. [3] used a
riterion for peak location and quantification that involved taking a
hifted logarithm of baseline-corrected data, then finding five con-
ecutive points which, when fitted with a quadratic function, had a
egative coefficient for the quadratic term and a correlation satisfy-

ng r2 ≥ 0.98 (see Fig. 6). They observed that typical MALDI FT-ICR
pectra have roughly 104,000 such non-overlapping peaks, which
learly indicates that they must be mostly noise and not actual com-
ounds. With spectra simulated as in this article, we get an average
f approximately 98,000 such peaks in each spectrum, so it turns
ut that the proliferation of peaks is probably largely due to the
ombination of the ARMA(1,5) model and the choice of distribution
or the innovations. (Spectra simulated from the same ARMA(1,5)

odel using normal innovations had only 70,000 such peaks on
verage, illustrating the dependence on the distribution used for the
nnovations. Spectra simulated from an MA(6) model with gener-
lized gamma innovations had only 90,000 such peaks on average,
hich serves as further confirmation that the ARMA(1,5) model is

uperior.)
. Application: beer spectrum

As an application of the techniques developed in the previous
ections, we use them to detect peaks in a MALDI FT-ICR spectrum
shown in Fig. 7) generated with beer as the analyte. Beer was cho-

Fig. 7. Spectrum with analyte. A MALDI FT-ICR sp
NOTE: “�-equivalent” refers to the equivalence of the quantiles with the quantiles
of the normal distribution that are 4, 4.25, 4.5, 4.75, and 5 standard deviations above
the mean. k̄ is the mean and s(k) is the standard deviation of the 100 estimates of k.

sen because of its known composition with highly structured mass
patterns of glycans, the compounds of interest in the analysis in
Barkauskas et al. [3]. For a peak detection criterion, we choose all
“large” peaks, which we define as follows: we first take all local
maxima in the spectrum which are k times the value of a base-
line estimated using an improved version of a method of Xi and
Rocke [8] (new version of algorithm submitted for publication),
where k is a constant to be determined. We then use a logarith-
mic transformation on the data and for each maximum look for
a set of five consecutive points containing that maximum which,
when fitted with a quadratic function, has a negative coefficient
for the quadratic term and a correlation satisfying r2 ≥ 0.98 as in
Barkauskas et al. [3]. The taking of logarithms is justified because
the data has constant coefficient of variation, so it follows from
the ı-method (see, e.g., Bickel and Doksum ([9], Theorem 5.3.3))
that taking the logarithm will approximately variance-stabilize the
data, which will allow for the direct application of standard linear
statistical models for analysis.

For this article, we choose k to be such that the spectrum
being larger than k times the estimated baseline is roughly
equivalent to being n standard deviations above the mean for
n∈ {4,4.25,4.5,4.75,5} in an independent, identically distributed
normal situation (i.e., we want the �(n) quantile of the assumed
distribution.) To estimate k, we ran 100 simulations of 107 obser-
vations of ARMA(1,5) data generated with coefficients from Table 1
and innovations given by a generalized gamma distribution with
the exponent and shape parameter from Table 1 and scale param-
eter equal to 1, then scaled the observations so each sample mean
was 1. For each simulation we calculated the observed�(n) quantile
of the data (i.e., k) for each of the five choices for n. The estimated
values of k and their standard deviations are displayed in Table 2.
The choice of k then boils down to a sensitivity/specificity debate. If
the primary goal is discovery, then a lower threshold for “large”
peaks might be useful; if it is necessary to limit the number of
false discoveries, then a higher threshold for “large” peaks would
be better.

For comparison, we also looked for “large” peaks using a simple

threshold model with the threshold chosen using Tukey’s biweight
with K = 9 to calculate robust measures of center c and scale s for
the spectrum, then proceeding as above by starting with any local
maximum which was at least c + 9s and looking for parabolic peaks.

ectrum produced using beer as the analyte.
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Table 3
Number of peaks found in beer spectrum and noise spectrum

Type of peak �-Equivalent

4 4.25 4.5 4.75 5 Threshold

PP Iso PP Iso PP Iso PP Iso PP Iso PP Iso

Sugar 27 55 27 55 27 54 27 54 27 54 27 55
Fragment 165 203 160 195 155 190 151 182 150 173 169 209
Unknown, with isotope 12 11 11 10 11 10 11 8 11 8 13 18
Unknown, without isotope 81 – 53 – 35 – 27 – 21 – 86 –
Noise spectrum peaks 30 – 12 – 5 – 3 – 2 – 34 –

Note: “PP” is the number of primary peaks detected; “Iso” is the number of isotopes of primary peaks detected (not counting the primary peaks).
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ig. 8. Peak detection method comparison. Peaks detected in noise spectrum by
bottom). Note that low masses correspond to high frequencies and vice versa.

We classified the peaks found by any of these methods as being
ither glycans, fragments of glycans, or unknown peaks. We then
urther subdivided the unknown peaks into those that had at least
ne isotope peak that was also detected by at least one method and
hose for which the main peak was the only peak ever detected.
he presence of at least one detected isotope peak virtually guar-
ntees that the peak is an actual compound, while a peak with no
sotope peaks detected could be either (i) a real compound whose
bundance is so low that its isotope peaks are lost in the noise, or
ii) some type of noise—for example, an electronic spike like those
rom the noise spectrum in Fig. 1. The results of each of these pro-
edures applied to the beer spectrum are summarized in Table 3,
long with the same procedures applied to the noise spectrum from
ig. 1.

By examining the masses of the peaks detected by each method,
t is clear that the threshold method is preferentially selecting peaks
t higher masses (lower frequencies). This is due to the fact that the
ean levels of MALDI FT-ICR spectra are basically increasing func-

ions of mass, so naturally peaks at the higher masses will have
greater chance of being above the chosen threshold value. What
ight be surprising at first glance, however, is that the�-equivalent
ethods are preferentially selecting peaks at lower masses (higher

requencies). If the model is correct, the detected peaks should con-
ist of signal, which should be detected no matter which method
s used; and noise, which should be approximately uniformly dis-

ributed throughout the spectrum. This apparent contradiction can
e resolved by observing that because of the form of the transfor-
ation used to calculate mass from frequency, the vast majority of

he data points are at low masses. When the masses are translated
ack to frequencies, we see that the peaks detected in the noise
uivalent method and threshold method, plotted by mass (top) and by frequency

spectrum by the �-equivalent methods are at frequencies that are
roughly uniformly distributed throughout the spectrum (Fig. 8), as
expected. In addition, the �-equivalent methods are clearly doing
a better job of not detecting peaks in the noise spectrum. Thus, the
�-equivalent methods appear to be the correct ones to use for peak
detection.

5. Future directions

One obvious future direction is to implement a maximum-
likelihood estimation algorithm following the methods of Li and
McLeod [7] to find simultaneous estimates of the ARMA coefficients
in Eq. (7) and the parameters˛ andˇ from Eq. (6) as well as standard
errors for the estimates of ˛ and ˇ. Another is to explore models for
the innovations other than the generalized gamma distribution.

Another possible direction is based on the observation that
all of the spectra analyzed in this article were generated on the
same machine; it would be interesting to see how much of this is
machine-dependent by analyzing spectra from other MALDI FT-ICR
MS machines. The ideal situation would be if one could calculate
˛, ˇ, and (possibly even) {�t} once for each machine and then use
these values for analysis going forward. In any case, the framework
provided in this article should allow other researchers to deter-
mine appropriate parameters for their own MALDI FT-ICR mass
spectrometry setups.
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