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Human serum glycomics is a promising method for finding cancer biomarkers but often lacks
the tools for streamlined data analysis. The Glycolyzer software incorporates a suite of analytic
tools capable of identifying informative glycan peaks out of raw mass spectrometry data. As
a demonstration of its utility, the program was used to identify putative biomarkers for ep-
ithelial ovarian cancer from a human serum sample set. A randomized, blocked, and blinded
experimental design was used on a discovery set consisting of 46 cases and 48 controls. Ret-
rosynthetic glycan libraries were used for data analysis and several significant candidate glycan
biomarkers were discovered via hypothesis testing. The significant glycans were attributed to a
glycan family based on glycan composition relationships and incorporated into a linear classi-
fier motif test. The motif test was then applied to the discovery set to evaluate the disease state
discrimination performance. The test provided strongly predictive results based on receiver
operator characteristic curve analysis. The area under the receiver operator characteristic curve
was 0.93. Using the Glycolyzer software, we were able to identify a set of glycan biomarkers
that highly discriminate between cases and controls, and are ready to be formally validated in
subsequent studies.

Keywords:

Biomarkers / Clinical glycomics / Data processing / Glycoproteomics / Human serum /
Ovarian cancer

Received: May 22, 2011
Revised: May 18, 2012

Accepted: May 22, 2012

1 Introduction

Glycans are a common post-translational modification of
proteins that consist of complex arrangements of monosac-
charides that vary in size, linkage, and composition. They
are instrumental to the vitality of higher organisms and are
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currently of considerable interest as a source for serum-based
biomarkers [1–8]. Glycan cancer biomarkers are of particular
importance because changes in glycosylation have been
observed in globally released glycans from the serum of
cancer patients [4–11] and on glycans released from targeted
glycoproteins [12, 13]. Mass spectrometry is widely used for
studying glycans because most compounds in a complex
mixture can be simultaneously detected and identified.
The masses and ionization characteristics of glycans are
suitable for most modern mass spectrometers. However, the
vast amount of glycan data makes it difficult to extract and
organize information from mass spectra.

There have been several methods for annotating glycans
incorporating combinatorial approaches (GlycoMod [14]),
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empirical databases (GlycoSuiteDB [15, 16], SWEET-DB [17],
BOLD [18], KEGG [19], and EUROCarbDB [20]), glycobiology-
oriented glycan library models (Cartoonist [21], Retrosyn-
thetic Glycan Network Libraries [22]), and tandem mass
spectrometry processing algorithms (StrOligo [23], GlySpy
and OSCAR [24, 25], GlycoPeakFinder [26], Glyco-Fragment
[27,28], GlycoWorkbench [29]). However, there has been little
attention paid to raw glycan spectra processing. Vakhrushev
and co-workers developed the SysBioWare software for pro-
cessing and annotating raw glycan mass spectra [30]. This pro-
gram includes several basic features including background
subtraction, peak detection, noise thresholding, and data pro-
cessing tools including preprocessing, smoothing, peak selec-
tion, and isotope grouping. Additional tools in the software
used for glycan processing include a difference calculator that
can use monosaccharide masses and a rudimentary biolog-
ical filter that uses logical monosaccharide ratio statements
entered by the user.

We have developed an integrated software annotation pro-
gram for glycan biomarker discovery that is referred to as
The Glycolyzer. The Glycolyzer contains a full data anal-
ysis pipeline in one software package to allow for min-
imal user intervention. The software was written in Ig-
orPro (WaveMetrics, Portland, OR, USA) language and
the source code is available from our group website
(chemgroups.ucdavis.edu/∼lebrilla/Glycolyzer.zip) or by re-
quest from the authors. Although IgorPro is required to run
the software, the algorithms can be viewed with text editors.
Future versions will be written in a more common program-
ming language. The mass spectrum analysis software is a
graphical user interface-based program designed for process-
ing and analyzing carbohydrate mass spectra with a focus
on clinical glycan biomarker discovery. The Glycolyzer has
similarities with the SysBioWare software but goes further
by incorporating a full analysis pipeline including additional
algorithms for calibration, theoretical retrosynthetic library
based glycan annotation, and statistical hypothesis testing.
The overall workflow, including Fourier transform ion cy-
clotron resonance (FT-ICR) and general mass spectra data
processing, is shown in Fig. 1. Calibrated deconvoluted data
from LC-MS experiments can be used as well by bypassing the
internal preprocessing algorithms and proceeding directly to
the annotation and statistics part of the pipeline.

We used this software to discover serum-based glycan
biomarkers for epithelial ovarian cancer. Epithelial ovarian
cancer is the most dangerous of the gynecologic malignan-
cies due to its propensity for late detection when most patients
present advanced stages of the disease. It currently lacks di-
agnostic tests that are effective for screening and early de-
tection. There are a limited number of FDA approved blood
tests available to assist in the diagnosis and monitoring of
ovarian cancer, including CA 125 and HE4 [31], but the value
of these tests is largely limited to monitoring disease status
after treatment, or assessing the risk of malignancy when an
ovarian mass has already been detected. CA 125 is elevated
in only 50% of Stage I cancers, so it is not a sensitive test for

Figure 1. The overall data workflow for the Glycolyzer.

early detection. It is also rather nonspecific, especially in pre-
menopausal women, leading to many false-positive results
that require diagnostic intervention [31]. Thus, new novel
serum-based biomarkers with improved sensitivity and speci-
ficity would be highly desirable.

We have pursued glycomics analysis using mass spec-
trometry to detect glycans that are altered either by
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monosaccharide composition and/or have in-
creased/decreased amounts when comparing the serum
from patients with ovarian cancer cases and healthy con-
trols [7, 32]. Although a number of informative glycans
were found that distinguished between cases and controls,
detection of the glycan mass peaks has been hampered by the
lack of useful bioinformatics analytic techniques. Use of the
Glycolyzer software provides a platform that can substantially
automate the analysis of complex mass spectrometry data,
allowing for detection and annotation of informative glycans.
Glycan annotation employs a novel theoretical glycan library
that has recently been published [22].

As a demonstration of the utility of this software, we have
used it to distinguish a unique set of glycans in a carefully se-
lected group of matched cases and controls. Briefly, human
serum N-linked glycans (N-glycans) were profiled with the
theoretical retrosynthetic N-glycan library and experimental
profiles were developed based on 46 control samples. The
work presented here demonstrates the high throughput ca-
pabilities of the current methodology on a matched set of
cases and controls. The methodology includes isolation of N-
linked glycans from human serum, mass spectrometry using
MALDI-FT-ICR, and then bioinformatic evaluation with the
Glycolyzer software. Based on these results, the discovery set
is appropriate for use in a clinical validation study to evaluate
the robustness of the candidate markers presented here.

2 Materials and methods

2.1 Human serum samples

Approval for this research protocol using clinical data and
human serum samples was obtained from the Institutional
Review Board of the University of California, Davis Medi-
cal Center. Human serum samples were obtained through
a formal data use agreement with the Gynecologic Oncol-
ogy Group (GOG). The subjects either had epithelial ovarian
cancer (cancer cases) or were healthy volunteers (healthy con-
trols). All serum samples arrived frozen and were transferred
to a −75�C freezer prior to processing.

The discovery set included healthy controls (n = 48) and
ovarian cancer cases (n = 46). The discovery set samples were
aged matched by 5-year intervals to avoid confounding effects
(40–45, 46–50, 51–55, 56–60, and 61–65 years). Disease status
(case versus control) and age block were blinded outside of
our laboratory prior to chemical analysis. The samples were
blocked into eight sets of 12 samples (each block contained six
controls and six cancer cases) with relatively even balancing
of subject ages. Following mass spectrometry data collection
and annotation using the Glycolyzer software, the samples
were unblinded for statistical analysis.

N-glycan release and extraction from human serum for
the discovery set was carried out by the optimized methods
described by Kronewitter et al. [33]. Briefly, 100 �L of serum
was mixed with 100 �L digestion buffer (pH 7.5, 100 mM

ammonium bicarbonate, 10 mM dithiothreitol) and heated
in boiling water for 2 min to denature the proteins. After
cooling to room temperature, 2.0 �L Peptide N-glycosidase
F (PNGase F, 500 000 units/mL, glycerol free, New England
BioLabs, Ipswich, MA, USA) were added and the mixture
was incubated in a microwave reactor for 20 min at a con-
stant power of 20 W. An 800 �L aliquot of chilled ethanol was
then added to precipitate peptides and proteins. The solution
was frozen in a −75�C freezer for 60 min and then cen-
trifuged at 13 300 revolutions per minute for 20 min (5415 D,
Eppendorf AG, Hamburg, Germany). After centrifuging, 700
�L of supernatant was removed from the precipitate and
dried in a Savant AES 2010 centrifugal evaporator (Thermo
Fischer Scientific, Waltham, MA, USA). PNGase F-released
glycans were then purified by graphitized carbon cartridge
solid-phase extraction (GCC-SPE) with an automated Gilson
GX-274 ASPEC liquid handler. GCC-SPE cartridges (150 mg
bed weight, 4 mL cartridge volume) were acquired from All-
tech (Deerfield, IL, USA). Three fractions of glycans were col-
lected using increasing amounts of acetonitrile (ACN): 4 mL
each of 10% ACN/H2O (v/v), 20% ACN/H2O (v/v), and 40%
ACN/H2O (v/v) with 0.05% trifluoroacetic acid. Each fraction
was collected and dried in a centrifugal evaporator apparatus.
Fractions were reconstituted in nanopure water prior to mass
spectrometry. Mass spectra were recorded on an external
source MALDI-FT-ICR instrument (HiResMALDI, IonSpec
Corporation, Irvine, CA, USA) equipped with a 7.0 T super-
conducting magnet and a pulsed 355 nm Nd:YAG laser. Five
spectra were collected for each sample: 10% ACN and 20%
ACN fractions in the positive mode and the 40% ACN frac-
tion in the negative mode. A total of 1410 FT-ICR spectra were
collected the 94 samples. The spectra were collected in blocks
(blocked by SPE fraction). The samples from the blinded, ran-
domized, sample set were analyzed sequentially on the same
instrument over 2–3 days to maintain constant sample detec-
tion conditions. The mass spectra collection conditions were
optimized for reproducibility by controlling several instru-
mental parameters during operation. The ultra-high vacuum
base pressure was maintained lower than 1 × 10−10 Torr
(measured with an ion gauge). Cooling gas was used to ki-
netically cool the ions during ion accumulation in a hexapole
prior to transfer to the ICR cell. The cooling gas pump down
rate was controlled via the initial system pressure. The ini-
tial system pressure chosen was between 1 × 10−10 and 5 ×
10−10 Torr prior to ionization and subsequent accumulation
and detection. Fixing the initial pressure allowed for replicate
pressure conditions in the ICR cell during detection. Under
these conditions, the average coefficient of variation of glycan
intensities from technical replicates from the same MALDI
spot ranges from 12% to 17% [33].

3 Data analysis algorithms

The Glycolyzer is a software package consisting of a graph-
ical user interface and several modular data processing
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algorithms that can be linked to each other in a user defined
order. All the algorithms are integrated into the platform’s
user interface and can be run in series as a data analysis
pipeline. Different degrees of processed data can be loaded
into the software. For example, the analytical signal from the
FT-ICR (ICR transient or free induction decay) can be loaded
directly into the start of the pipeline and processed, or the
analytical signal can be processed externally to the Glycolyzer
software via instrument software (e.g. Omega8, IonSpec) and
loaded in at a later point in the data analysis pipeline. This al-
lows data from other types of mass spectrometers to be used
as long as the data are already calibrated. If external soft-
ware deconvolution is preferred rather than the Glycolyzer’s
built-in deconvolution algorithm, exogenous deconvoluted
monoisotopic masses can be loaded directly and the rest of
the Glycolyzer’s analysis pipeline can still be applied.

3.1 Automatic spectra processing

Data analysis for clinical glycan sample sets requires many
automated steps to assure rapid and consistent data handling.
The Glycolyzer automates the full data analysis pipeline
starting with the analytical signal from the instrument and
concluding with biomarker elucidation. The general modules
included are: data importing and exporting, FT-ICR signal
preprocessing, internal calibration, noise threshold calcu-
lation, peak picking, isotope grouping and filtering, glycan
annotation, intensity normalization, missing value filling,
multiple spectra averaging, hypothesis testing, and multiple
testing corrections. The glycans that pass the rigorous
multiple testing corrected hypothesis tests are considered to
be candidate biomarkers and can be incorporated into data
classifiers and their diagnostic performance evaluated.

3.2 Data importing/exporting

Importing data from text files is facilitated by the Glycolyzer’s
graphical user interface. Raw ICR transients, mass spectra, or
deconvoluted monoisotopic mass lists can be loaded in as sin-
gle files or as a batch. The modular pipeline of the Glycolyzer
allows the user to select appropriate analysis algorithms for
the data type loaded. Different levels of data preprocessing
previously applied to file are taken into account by allowing
data to start at different parts in the analysis pipeline.

3.3 FT-ICR preprocessing

Fast Fourier transforms (FFTs) were performed on raw data
transients obtained from Omega8 (IonSpec) data acquisi-
tion software. The analog-to-digital conversion rate, magnet
strength, number of zero fills, and apodization window are
specified by the user. In this study, one zero fill was used dur-
ing the Fourier transform along with a Blackman apodization

window. A one second transient was used. In addition, the
user is able to truncate the length of the transients prior to
applying the FFT to improve quantification by reducing the
dampening effects inherent to ICR transients. The FFT con-
verts the transients from the time domain to the frequency do-
main. Many apodization windows for smoothing out the peak
shapes, such as the commonly used Blackman and Hamming
windows, are included in the user interface.

3.4 High mass accuracy spectra calibration

High mass accuracy calibration was used for the clinical sam-
ples. The error was generally less than 5 parts per million
(ppm) root-mean-squared (RMS) mass difference of calibrant
ions from calculated values across a data set. Smaller errors,
e.g. 1–2 ppm, have been obtained for glycan standards (data
not shown) but is challenging for large data sets. Accurate cali-
brations allow for accurate mass determination of unknowns.
For FT-ICR instruments, the free induction decay transients
need to be converted into mass spectra via the FFT and cal-
ibration equations. The Glycolyzer’s internal calibration al-
gorithm performs a six-point calibration using six common
glycan ions in each spectrum. A serum N-glycan mass profile,
derived from 46 healthy controls, was used to identify the six
best ions for calibrating human serum N-glycan spectra [22].
The six calibrant ions were selected from the set of 28 glycans
detected in 100% of the samples. The calibrant masses were
converted to the frequency domain via the following standard
calibration equation [34–36]:

m/z( f ) = A

f − B
.

Each calibrant ion mass was aligned to its respective
monoisotopic peak in each spectrum. To identify the
monoisotopic peak for alignment, the first step is to
isotope-filter the frequency data and highlight monoiso-
topic peaks. Monoisotopic peak selection in the frequency
domain is different from the mass domain because the
isotopologue distributions are reversed and the neutron
mass differences between isotopologue ions are nonlinear in
the frequency domain. For this reason, a novel deisotoping
algorithm was developed specifically for the frequency
domain and presented here. Finally, graphs containing the
monoisotopic-highlighted experimental data surrounding
each of the six calibrant ions are presented to the user for
a final visual inspection. If the wrong peak is selected by
the computer, the user can manually reselect the correct
peak with arrow buttons then continue to the calibration
algorithm and subsequent samples. The manual inspection
step ensures proper calibration of densely packed spectra that
are hard to decipher with computer algorithms alone. Final
calibration is performed by fitting the calibration equation
to the calibration ions to find the equation coefficients. The
optimized calibration is facilitated by a CurveFit function
built into IgorPro that is based on the Levenberg–Marquardt
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algorithm. The Omega8’s (IonSpec) and the Glycolyzer’s
internal calibration methods are compared in Supporting
Information Fig. S1, where 12 spectra were calibrated and
their RMS mass deviations from known values recorded.

3.5 Noise threshold

Separating the signal from the noise is important for peak an-
notation and reliable quantification. To threshold a spectrum,
a limit of detection (LOD) line is calculated. All peaks above
the line are considered signal and all peaks below the line
are classified as noise. One option for dynamically assigning
a LOD is to manually set the threshold to a relative percent-
age of the base peak. A user-selected threshold is problematic
because the cutoff is arbitrary and independent of the noise
and background. In contrast, we apply different threshold
settings based on the standard deviation and mean intensity
of the noise. The mean intensity of the noise is calculated
by the average mean of all the peak intensities in the spectra
since the number of noise data points greatly outweighs the
signal. Commonly, the lower LOD is set at three-sigma above
the mean noise level, but we used six-sigma above the mean
noise level to further reduce the number of falsely annotated
noise peaks.

The standard deviation of the noise is calculated from a
histogram of all intensities in the spectrum. This histogram
is presented in Supporting Information Fig. S2. The most
common intensity in the histogram is the noise level used
as the standard deviation. Noise removal by threshold cutoffs
drastically improves processing time since the subsequent al-
gorithms are only applied to the signal. Alternately, the stan-
dard deviation of the noise is calculated from the full-width-
at-half maximum of the distribution. However, the standard
deviation from this method is smaller and produces a lower
threshold line. Although lower threshold cutoffs allow for
higher sensitivity, they also result in less specificity as noise
peaks can be detected above the threshold. This algorithm
works well for data collected in this study because there are
significantly more noise peaks than signal peaks detected in
a spectrum.

3.6 Peak picking

The Glycolyzer program requires that each peak has a max-
imum and contain at least three data points. The centroid
mass of each peak is derived by fitting a parabola to the top
three points in each peak via parabolic regression. The fit
parabola provides a centroid mass and a corrected intensity.
Apex-based intensities are used for ICR spectra because peak
line shapes and corresponding areas are affected by many
variables not directly related to the number of ions in the ICR
cell [37]. In contrast, intensities calculated by the area under
the curve (AUC) work well for TOF since the TOF detectors
are based on counting ions.

3.7 Isotope grouping

Current mass spectrometers commonly resolve glycans into
their isotopologues. High resolving power presents the op-
portunity to identify the monoisotopic peak for further anno-
tation and analysis. Several research groups have developed
isotope grouping algorithms [38–42]. The Glycolyzer’s gen-
eral isotope grouping workflow is based on the Thorough
High Resolution Analysis of Spectra by Horn (THRASH) al-
gorithm [43] with several modifications pertinent to MALDI
ionization and glycans.

One significant improvement is the Glycolyzer’s ability to
separate overlapping clusters of isotopologues. Rather than
using subtractive methods for deconvoluting overlapping
distributions, the theoretical overlapped models are recon-
structed to reduce the propagation of fitting errors in the
residual spectra. The reconstructive approach is similar to the
LASSO method applied by Du and co-workers [44]; however,
our model generation is permutated rather than regressed
with automatic variable selection. A simplified workflow is
presented in Supporting Information Fig. S3.

The first step for deconvolving the spectra is to identify an
isotopic cluster. A cluster is a set of ions spaced apart by an iso-
tope mass unit equal to 1.00235 Da [43], or a fraction depend-
ing on the charge state. The fraction is equal to the isotope
unit divided by the charge state. A cluster can contain more
than one isotopic distribution if multiple distributions over-
lap. Overlapped isotopic distributions are common in glycan
spectra because chromatographic separation prior to mass
spectrometry is typically not performed. MALDI mass spec-
trometry has the favorable characteristic of only producing
ions with a single charge. This eliminates the need for charge
deconvolution because the spacing between isotopologues is
always a full isotope mass unit rather than a fractional mass
related to higher charge states.

Isotope clusters are found in the spectra by a neighbor
peak-finding algorithm. The algorithm looks for neighboring
peaks around a principal ion that are one isotope mass unit
away in both directions. A mass-error tolerance is applied
to this calculation to provide a window for locating a neigh-
boring peak apex. This mass error window allows for proper
detection of neighboring peaks despite imperfect peak shapes
and centroid errors. If a neighboring peak apex is within the
error window, it is added to the cluster and the algorithm
continues searching for additional ions to add to the cluster.
Additional ions are found by making the newly added ion the
principle ion and repeating the neighboring peak selection
process. This peak finding process continues until there are
no neighboring ions to add. If a large mass-error tolerance
is selected by the user, the clustering algorithm may falsely
include a second cluster if the spectrum is densely populated.
However, this type of error will be corrected later in the algo-
rithm when the cluster is deconvoluted (see below). However,
if the error is too small, the tail end of a cluster may be bro-
ken off and form a second cluster. This condition results in
assignment of extra false-positive monoisotopic peaks.
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The second step for deconvolution is to create synthetic
isotopic distributions. Depending on the type of molecules
detected in the spectra, the isotope distributions will change.
Peptide mass spectra are often simulated with the use of
an averagine. An averagine unit represents, by mass and
elemental composition, the average mass of an amino acid
that occurs in human proteins. Unknown peptide masses
can be converted to elemental compositions by dividing the
unknown mass by the averagine mass (111.1254 Da) to find
the number of averagine units and then multiplying the
number of units by the averagine elemental composition
(C4.9384H7.7583N1.3577O1.4773S0.0417) [45]. However, N-glycans
have compositions that differ from peptides. Because of
the need for sugar-based isotope distribution models,
an averagose model was established by An et al. [46].
Subsequently, a direct glycan analogue to the averagine
was presented by Vakhrushev et al. [30], which included an
average monosaccharide unit based on an equal weighting
of hexose, N-acetylhexosamine, fucose, and neuraminic
acid monosaccharides. We now propose a similar averagose
for modeling N-glycans based on the theoretical libraries
and experimentally derived glycan profiles. Experimental
serum profiles generated from applying theoretical libraries
to experimental spectra provide a more accurate estimate
of a human averagose. The proposed serum averagose
is C6.0000H9.8124N0.3733O4.3470S0.0 with an average mass of
156.64662 Da (sulfur was included as a place holder since
it is not typically seen in our spectra). This new more
specific averagose is compared against theoretical isotope
distributions modeled from the estimates of elemental
compositions with Poisson distributions [46]. Supporting
Information Fig. S4 demonstrates that both Vakhrushev and
Glycolyzer methods produce characteristics similar to the
exact elemental composition model. In addition, a peptide
averagine was used for glycans and a relatively poor fit was
obtained compared to averagose methods. For deisotoping
purposes, reducing the length of the ICR transients from
1.0 to 0.5 s (1 048 576–524 288 data points) improved the
chi-squared fit of the model to the experimental data.

Next, we improved processing performance by filtering the
clusters based on how many isotopic distributions are present
in a cluster. Extensive deconvolution is not needed on single
ion clusters and is reserved for larger clusters containing sev-
eral monoisotopic ions and respective distributions. If there
are multiple maxima within a cluster, multiple ions are ex-
pected and complete deconvolution is performed.

Theoretical isotopologue intensity distributions are then
calculated based on an averagose model. If there is only
one expected ion in the cluster, a simple theoretical model
with one ion is created. However, if multiple ions need to
be deconvoluted, combinations of multiple distributions are
needed. Overlapping isotope group data reconstruction is ac-
complished by applying a nonlinear set of 16 ratios between
the intensity of multiple clusters to build the model. Six-
teen ratios of ion intensities are used to span two orders of
magnitude with a small number of steps. This decreases the

computer processing overhead while maintaining the desired
deconvolution sensitivity. A nonlinear set of ratios are chosen
to have greater detail for the ratios close to unity while the
more apparent larger ratios are still included. The synthetic
models are created with varying amounts of mass unit offsets
between the theoretical ions. The number of unit offsets is
limited by the number of ions in the cluster to further speed
up the processing.

Finally, the complete models are multiplied by an align-
ment matrix and the individual fits are evaluated with a chi-
squared test. The best chi-squared fit alignment is decom-
posed to identify the monoisotopic peaks and the results are
recorded. The monoisotopic and isotopologue peaks are as-
signed and the theoretical values are subtracted from the spec-
trum. The algorithm then repeats clustering on the nonan-
notated portion of the spectra. This process repeats until all
the ions above the noise threshold are assigned.

3.8 Glycan annotation

The Glycolyzer provides two methods for annotating
peaks using accurate mass: development mode and high-
throughput mode. Tools available for use in the development
mode include a broad combinatorial method for making
theoretical glycans and calculating monosaccharide dif-
ferences from the spectra. The brute-force combinatorial
method can be adapted with biological rules input by
the user. Similar “biological filters” have been described
in the literature to reduce the quantity of nonsensical
glycan compositions [14, 30, 47]. OmniFinder, a dynamic
algorithm similar to GlycoMod [14], creates a list of all the
mathematically possible glycans or glycopeptides within
specified monosaccharide and/or amino acid compositions
and searches for them in the spectra. The list is compre-
hensive but includes a high degree of false-positive hits. The
nonsensical glycan false hits are largely eliminated with an
array of glycan filters based on known biology.

Another useful tool in the development mode is a glycan
peak relationship finder. Mass differences consistent with
monosaccharide masses are indicative of an ion being a gly-
can or a glycoconjugate. This can be helpful with variable or
unknown head groups. This information is also helpful for
determining families of glycans that differ by one monosac-
charide. Finding these differences require processed spectra
that only contain monoisotopic masses because many extra-
neous differences will be found that include associated iso-
topologues. A stem-and-leaf algorithm is employed to find
differences because error bars can be applied to each side of
the difference. The stem-and-leaf algorithm starts by looking
for imprecise monosaccharide differences and iteratively fo-
cuses in on the differences with the least RMS mass error.
The adaptive algorithm allows the difference finder to work
on poorly calibrated spectra. Calibrated spectra often yield
RMS mass errors in the several hundreds of parts-per-billion
range for monosaccharide differences. The high accuracy of
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correctly matched pairs allows for easy differentiation of true
assignments from false ones.

In our glycomics studies, high-throughput annotation was
achieved by bounding the glycan composition possibilities to
a targeted list of N-glycans. A recently published theoretical
glycan library or experimentally derived glycan profile was
used as a basis for annotation [22]. In short, the N-glycan
library was generated by degrading fully glycosylated com-
plex, hybrid, and high mannose type glycans all the way to
the N-linked core. The glycome is bounded by the extent of
glycosylation of the starting point glycans. The retrosynthetic
degradation provides a well-defined comprehensive list. Sub-
set profiles were rapidly established by scanning the N-glycan
library across a set of samples and matching the masses to
well calibrated, highly resolved, peaks with masses within a
15 RMS ppm mass error cutoff. Mass profile establishment
is critical for advancement from the development stage to the
high-throughput biomarker analysis.

Implementation of glycan libraries improves the
biomarker detection sensitivity because it focuses the hypoth-
esis testing to only glycan masses. Reducing the number of
tests allows for respective performance gains from the multi-
ple testing corrections. The Bonferroni multiple-testing cor-
rections help avoid inflated Type-1 error rates. The size of
the glycan profiles is large enough to test all the glycans of
interest but still small enough for significant changes to be
detected.

The combinatorial glycan method (generating a library by
iterating over all possible monosaccharide combinations) was
compared with the theoretical glycan library method by exam-
ining the fraction of compositions consistent with the library
to those that are not. The number of inconsistent combi-
natorial compositions increases with increasing tolerances
for mass assignments. This trend is shown in Supporting
Information Fig. S5. The drawback of using an unfiltered
combinatorial library is that it generates between 40% and
60% false compositions depending on whether protonated
masses or sodiated masses are used; assuming a 15 RMS
ppm mass error cutoff. There are more false compositions in
the sodiated mass list because of the allowed proton-sodium
exchange common to the carboxylic acid group of sialic acid.
The sodium substituted cation takes on a multiple sodiated
form [M + (1 + x)Na − (x)H]+, where x can be equal to or less
than the number of exchangeable acid groups. An N-glycan
biological filtered method is not included for comparison be-
cause the N-glycan filter is inherent with the theoretical ret-
rosynthetic theoretical N-glycan library [22]. All of the rules
are included in the glycan networks and initial starting point
ions. Additionally, multiple mass error windows are included
for comparison. Supporting Information Fig. S5 depicts the
importance of high mass accuracy measurements and shows
that as the mass error tolerance increases, the number of false
assignments increases.

Since many glycans are present in families that are related
by monosaccharides, identifying these differences in spectra
helps confirm compositions without the need for tandem

mass spectrometry or glycosidase digestion. It is critical that
each spectrum is reduced to only monoisotopic peaks prior
to searching for monosaccharide differences.

4 Statistics

4.1 Normalization

Normalizing spectra intensities is one of the most important
operations in mass spectrometry analysis. It affects intensity
values more than any other data operation. The Glycolyzer
includes several normalization options: base peak intensity,
total ion intensity, total peak intensity (TPI), total library in-
tensity, and select library intensity. Base peak intensity nor-
malization converts peak intensities to a percentage relative to
the most intense peak in the spectrum. However, changes in
the base peak’s intensity cannot be observed and subsequent
perturbations to it are propagated to other ions in the spectra.
Total ion intensity is based on a sum of all data present in the
unprocessed spectrum. Dividing ion intensities by the mean
of all ion intensities will normalize the spectrum primarily to
the noise level because of the relative sparseness of the ions
as compared to the noise. TPI involves normalizing the spec-
tra to the average peak intensity based on only peaks above
the noise threshold. This is similar to the method used by
Barkauskas et al. on a prostate cancer study [48] and focuses
the normalization to intense peaks. The total library intensity
option is similar to the TPI except that only annotated peak
intensities contribute to the mean total intensity divisor. This
allows normalizing by only the ions of interest (N-glycans
in this case). The select library intensity normalization fur-
ther focuses the normalization divisor by including only a
select subset of the annotated ions. Prior information on the
frequency of detection of library ions in a data set (the per-
centage of samples containing the ion) can be used to rank
the ions so only glycan ions with high detection rate are used
for normalization calculations.

Although the different normalization methods tested on
this data set produced slightly different sets of significant
ions, there was a high degree of similarity between results
because the methods all used a constant divisor and only
varied by the different sets of ions used to calculate the divisor.
The strongest biomarkers were found significant regardless
of normalization method. The results from this study are
based on the TPI method.

4.2 Spectra averaging

Collecting multiple spectra of the same sample greatly im-
proves the precision of the measurement. As the number
of spectra, N, increases, the standard deviation decreases in-
versely proportional to the square root of N [33]. Replicate
spectra can be processed with the Glycolyzer providing the
user with two options to incorporate them. The most common
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method averages specific ions intensities from each techni-
cal replicate together prior to statistical analysis. This works
best when target ions are detected in all spectra. An alter-
nate method is to take the highest value of each ion from
the set of replicates to use as the value. This situation rep-
resents the best-case scenario of data from the sample. This
can help overcome some of the variability from the MALDI
ionization process, where cold spots on the matrix produce
only the most intense ions. Each ion needs only be detected
above the threshold in one sample of a given set of replicates
to be included. Standard spectra averaging of specific ion in-
tensities were used for the five technical replicates acquired
in the discovery set.

4.3 Missing values

When extracting glycan library masses from the data, some
of the ions in the profile are not detected in the data above
the noise threshold or are missed by deisotoping errors. The
absence of a peak is useful when monitoring the frequency
of detection of an ion (presence or absence) across a sam-
ple set but often causes problems with downstream statistics
calculations. The solution to the missing data implemented
here is to look below the threshold and find the largest peak
within a prescribed mass error window. Filling in noise values
for missing peaks should result in higher quality biomarkers
because the former zero values will skew distributions of
low intensity ions that are near the noise threshold cutoff.
However, very low intensity peaks can be over represented
if the number of zeroes is greater than the number of de-
tected peaks across a data set. Although a potential problem,
this scenario typically does not lead to an increased number
of false-positive biomarkers because the glycans with large
amounts of missing values will not pass the strict hypothesis
tests due to high variance caused by the randomness of the
low intensity peaks used for data filling.

4.4 Multiple statistical hypothesis testing

Each glycan annotated by the theoretical profile is subjected
to hypothesis testing to determine if any changes are sig-
nificant. Five technical replicate FT-ICR spectra from each
sample are averaged prior to hypothesis testing. The natu-
ral logarithm of the intensities is used for testing to prevent
the most intense ions in the spectra from overwhelming the
less intense species. Furthermore, taking logarithms of the
intensities improves the assumption of constant error vari-
ance and makes the data better suited for standard statistical
testing [4]. Two-tailed t-tests were used for hypothesis test-
ing. Due to the large amount of independent glycans tested
in this manner, multiple testing corrections should be em-
ployed. Bonferroni corrections are implemented to add rigor
to the testing by maintaining the family-wise error rate. Gly-
cans with significant changes in intensity are found when

they pass the hypothesis testing (p < 0.05) and the Bonfer-
roni multiple testing correction (n = 101 for the number of
glycan masses in the library).

4.5 Linear classifier motif tests

The significant markers that passed the t-test were combined
into a motif test that leverages deviations in case intensities
from control mean intensities. Combining multiple markers
into a diagnostic panel has been shown previously to improve
discrimination [49, 50]. To obtain a score for each sample,
each glycan in the motif test is weighted by the difference be-
tween the mean control ion intensity and the mean case ion
intensity. The larger the difference between the mean is, the
larger the weighting factor. The scoring scheme was set up by
adding the absolute value of the marker ion deviations from
the control mean. This allows the summation of positive and
negative deviations found in the biomarker motif test. The
net score is used to classify unknown samples; whereas the
samples consistent with the motifs, and thus larger devia-
tions, score higher. A separate motif test was developed for
each ACN fraction. The results are summarized with receiver
operating characteristic curves (ROC) and evaluated by the
AUC. The AUC is calculated by geometric integration. Ap-
plying motif tests to the discovery set provided high AUC
results for the three fractions: 10% (0.89), 20% (0.87), and
40% (0.88). When weighted evenly across the 10%, 20%, and
40% fractions, a linear combination of the motif test scores
can be linearly combined into an overall test metric. The over-
all test improves sensitivity and specificity and increases ROC
AUC to 0.93. The ROC curve results are included in Fig. 2.

4.6 Data modeling

The data analysis pipeline was evaluated by modeling the data
with perturbation analysis. Synthetic case and control mass
spectra were created with perturbed intensities. A representa-
tive sample spectrum was selected and used to seed new spec-
tra. Each intensity value was modified with a multiplicative
factor generated randomly from a normal distribution using
a Box–Muller simulation [51]. Several data sets were gener-
ated to include distributions in intensity values that produced
coefficients of variation of 10%, 20%, 30%, 40%, and 60%.
The randomization was evaluated by comparing two sets of
unperturbed control spectra. After data processing, no signif-
icant biomarkers were detected (p = 0.05) indicating the data
is sufficiently randomized in the model. An example plot of
48 simulated control spectra with a coefficient of variation of
60% is included in Supporting Information Fig. S6. At each
coefficient of variation perturbation, two sets of 48 spectra
(one for case and the other for control) where the case set
contained one glycan ion with its mean intensity value in-
creased by 5%, 10%, 25%, 50%, 100%, or 150% relative to the
control. This change in abundance simulates the effect of a
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Figure 2. Receiver operating characteristic curve results from ap-
plying the glycan motif test to the discovery sample set. The area
under the curves represents a high degree of specificity and sen-
sitivity for all three fractions independently. The “overall” trace is
an evenly weighted linear combination of the motif scores from
the 10%, 20%, and 40% fractions.

case biomarker ion deviating in intensity from the control.
The resulting case sets contained one theoretical biomarker
with increasing perturbations that could be used to test the
Glycolyzer’s ability to detect biomarker changes.

The synthetic sets of raw spectra were processed with the
Glycolyzer’s preprocessing and statistical algorithms and the
p-values and ROC AUC values were recorded. The hypoth-
esis testing analysis was based off of the single biomarker
programmed into the model and the same multiple testing
corrections were applied (N = 101). Trend lines depicting
the relationship between percent change in abundance and
ROC AUC are plotted in Fig. 3. Approximating the ROC AUC
values at p = 0.05 using linear interpolation of the data al-
lows for the calculation of a p = 0.05 cut-off line. Plotting
the interpolated ROC AUC values versus interpolated per-
cent abundance change is shown in Supporting Information
Fig. S7. The p = 0.05 cut-off line is presented as a dashed
line in Fig. 3. Modeled values higher than this dashed line in
Fig. 3 would pass the hypothesis tests. The glycan biomarkers
detected from the experimental data were overlaid to demon-
strate how well the experimental data followed the trends and
pass the modeled p-value cut-off line. A total of 85% of the
experimentally determined biomarkers were above the mod-
eled cut-off line.

5 Discussion

The Glycolyzer successfully calibrated and processed 1410
transients from the ovarian cancer discovery set and identified

Figure 3. Evaluation of the performance of the Glycolyzer classi-
fier using controlled modeled data. The trend lines demonstrate
how the ROC analysis responds with variation within a data set
and separation in average intensities between the data sets. The
dots correspond to the glycans significantly changing between
disease states. The dashed line corresponds to an approximated
p = 0.05 cut-off value determined from the modeled data. Experi-
mental biomarkers below the simulated p = 0.05 line are marked
with * in Table 1.

several candidate glycan biomarkers. The unified software ap-
proach streamlined the data analysis and allowed for results to
be obtained on the same day the last spectrum was collected.
The empirically derived serum glycan profile [22] (containing
101 glycan masses) developed in-house was used to filter the
data. After statistical analysis, 51 glycan candidate biomark-
ers (39 glycan masses due to detection in multiple fractions)
were identified using a p < 0.05 cutoff for Bonferroni cor-
rected p-values (n = 101). The candidate markers with their
monosaccharide compositions and p-values are summarized
in Table 1 . The full list of 101 glycans monitored is included
in Supporting Information Fig. S8 and the compositions are
included in Supporting Information Fig. S9. The glycan log
mean intensities and standard deviation are also presented.

The data quality and processing improvements can be ob-
served by selecting biomarker m/z 1809.63 from Table 1 as
a case study. Plotting all of the mass spectra from the con-
trols and juxtaposing it to all of the spectra from the cases
shows that even without data processing, the abundance has
decreased on average. This is shown with the mass spectra
zoom profiles in Fig. 4. The data processing improvements
to the data can be exemplified using box plots in which the 0,
25, 50, 75, and 100 percentiles are shown for the normal and
cases in Fig. 5. The logarithm and normalization procedures
applied tightened up the data distributions, produced more
symmetric distributions and biomarker discernment fidelity.

Twelve of the glycans identified as significant were de-
tected in more than one elution fraction. Interestingly, all 12
were detected in multiple fractions and had consistent trends
of increasing or decreasing intensities. Although it is possi-
ble that glycan isomers were crudely separated along the SPE
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Figure 4. Comparison of mass spectra
centered on the isotope envelope of m/z
1809.639 and its monoisotopic mass. The
left plots correspond to the unprocessed,
averaged data from the controls while the
right plots correspond to the unprocessed,
average data from the cases. Since the
plots overlap, box plots were included to
show the 0, 25, 50, 75, and 100 percentiles.

Figure 5. Improvements from data processing. The left box plots correspond to the unprocessed, averaged data while the right box plots
correspond to the same data after it is log transformed and normalized.

fractional lines, the constant trends of the glycans across frac-
tions suggest a split fractionation of single glycan structure.
Several glycan compositions were detected with and without
fucose. When the fucosylated/nonfucosylated pairs were de-
tected in more than one fraction, the fucosylated form was

more intense in the later fraction. This is consistent with the
elution order observed with graphitized columns and LC/MS.

N-glycans are synthesized enzymatically with glycosyl-
transferases and glycosidases and are built up one monosac-
charide unit at a time. This process results in families of
glycans that differ from each other by only one monosaccha-
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Figure 6. A network of the statistically significant glycan biomarkers. The compositions correspond to the number of units: Hexose-N-
Acetylhexosamine-Fucose-Neuraminic Acid-Sodium Substituted Proton.

ride. The statistically significant biomarkers detected in this
study primarily come from a single family. A glycan network
in Fig. 6 shows 34 of the 39 glycan nodes can be linked either
directly or indirectly to all other glycans in the family by sin-
gle monosaccharide links. The glycan network is also coded
with the change in intensity trends between the controls and
the cancer cases. Detection of glycans in families increases
the confidence of the glycan annotations because additional
orthogonal information is used beyond exact mass.

Most of the neutral glycans were decreasing in intensity
while most of the glycans containing sialic acid were increas-
ing in intensity. However, one set of neutral glycans, con-
sisting of a subfamily of glycans located in the bottom left of
Fig. 6 (Hex3HexNAc4, Hex3HexNAc4 Fuc1, Hex3HexNAc5,
Hex3Hex NAc5Fuc1) was increasing. Specifically, this in-
crease in the FA2 glycan (Hex3HexNAc4Fuc1) is consistent
with reported increases detected in ovarian cancer patients
from serum IgG and whole serum [13]. The FA2 nomencla-
ture is described by Gornik et al. [52]. Kim et al. also reported
the same increase in FA2 levels in serum [53]. Eight signifi-
cant glycan biomarkers containing sialic acid were detected in
the 20% and 40% fractions. Increasing changes in sialylated
glycan intensities are consistent with other reports in litera-
ture where sialylated glycans have been implicated in cancer
detection and metastases [54–56]. Many sialic acid containing
and sialic acid free glycan pairs, such as Hex5HexNAc4 and
Hex5HexNAc4 NeuAc1, showed a trend of increasing sialic
acid containing and decreasing sialic acid free intensities.
This conflicting trend is consistent with the sialic acid free
glycans being used as substrates for upregulated sialyltrans-

ferases, which produce sialylated glycans. The sialic acid pairs
and mean intensities are listed in Table 2. Although we can-
not confirm that the sialylated/nonsialylated pairs have the
same core structure, the trends seem intriguing and require
further analysis.

Six of the eight glycan biomarkers contain fucose and
which may indicate the presence of sialyl Lewis X motifs. Sia-
lyl Lewis X has been documented as a marker for inflamma-
tion [57, 58] and its aberrant expression has been implicated
in tumor formation and metastasis [59]. Additional structural
studies would demonstrate whether the fucose is located on
the core or antennae.

6 Concluding remarks

The Glycolyzer software removes the data analysis bottleneck
and drastically decreases the time to results for a clinical gly-
comics study. Each piece of the biomarker discovery pipeline
can now be perturbed and evaluated now that the full pipeline
is in place and metrics for evaluating the system have been
established. Prior to the Glycolyzer, manual calibration and
data analysis from a 94-sample set would take several weeks
to months. The Glycolyzer can accomplish the same task in a
matter of hours. The magnitude of samples processed in this
study demonstrates the potential for high-throughput anal-
ysis for discovery and validation studies in the future, both
for ovarian cancer and other malignancies. In addition, the
Glycolyzer allowed us to identify a panel of glycan biomarkers
with high sensitivity and specificity that are appropriate for
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Table 2. Sialic acid containing or sialic acid free pairs of glycans. The sialic acid free glycans decreased significantly while the sialic acid
containing glycans increased significantly

ID ACN elution Exact m/z Intensity Intensity Intensity Intensity Intensity Hex HexNAc Fucose NeuAc Na/H
fraction relative Log10 Log10 Log10 Log10

percent control control cases cases
change mean CV mean CV

16 10% 2028.714 −28.9% 2.96 4.2% 2.81 5.2% 6 5 0 0 0
45 40% 2441.870 137.4% 3.97 5.1% 4.35 7.2% 6 5 1 1 0
48 40% 2732.966 33.6% 3.20 4.4% 3.33 4.9% 6 5 1 2 0
49 40% 2754.948 68.7% 3.07 4.0% 3.30 6.6% 6 5 1 2 1
35 20% 2012.719 −20.4% 4.48 4.3% 4.38 5.6% 5 5 1 0 0
39 20% 2325.796 29.4% 2.49 7.4% 2.60 12.6% 5 5 1 1 1
26 20% 1663.581 −37.2% 4.44 4.5% 4.24 7.0% 5 4 0 0 0
10 10% 1663.581 −48.2% 4.30 4.8% 4.01 6.7% 5 4 0 0 0
33 20% 1976.659 56.1% 2.82 8.3% 3.01 15.4% 5 4 0 1 1
36 20% 2122.717 28.7% 2.54 6.9% 2.65 12.1% 5 4 1 1 1
5 10% 1460.502 −48.2% 4.02 6.1% 3.73 8.6% 5 3 0 0 0
43 40% 1727.601 29.0% 3.59 4.3% 3.70 3.4% 5 3 0 1 0

formal validation testing. Although the case subjects in this
study were diagnosed with ovarian cancer, it is possible that
the biomarkers are noncancer specific and could represent an
inflammatory response. This would need to be investigated
in subsequent studies.

GlycanFinder algorithms were influenced in part by IgorPro
code used for combinatorial glycans model building developed by
Brian H. Clowers. Eric D. Dodds helped develop the Fast Fourier
Transform algorithm use to transform the raw transient data.
Sample selection, age matching, and blinding were performed by
Donald A. Barkauskas and David M. Rocke. In addition, insight
into the statistical treatment of data was provided by them as well.
Anding Fan helped develop an application that produced the raw
transient text data files from instrument specific data files for use
in the Glycolyzer. We gratefully acknowledge the financial support
provided by the National Institute of Health RO1 GM049077.
Support was also provided by a gift from the National Ovarian
Cancer Coalition (NOCC), Sacramento Chapter (to G.S.L.); a
UC Davis Health Systems Research Award (to K.S.L), and an
Ovarian Cancer Research Fund (OCRF) Award (to G.S.L). We
also acknowledge the Gynecologic Oncology Group Tissue Bank
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