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Peptidomics is an emerging field branching from proteomics that targets endogenously pro-
duced protein fragments. Endogenous peptides are often functional within the body—and
can be both beneficial and detrimental. This review covers the use of peptidomics in under-
standing digestion, and identifying functional peptides and biomarkers. Various techniques
for peptide and glycopeptide extraction, both at analytical and preparative scales, and available
options for peptide detection with MS are discussed. Current algorithms for peptide sequence
determination, and both analytical and computational techniques for quantification are com-
pared. Techniques for statistical analysis, sequence mapping, enzyme prediction, and peptide
function, and structure prediction are explored.
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1 Introduction

Peptidomics, the comprehensive qualitative and quantitative
analysis of all peptides in a biological sample [1], is an emerg-
ing field derived from proteomics and enabled by modern sep-
aration, analytical and computation technologies. The com-
plex biological matrices typically examined in peptidomics
experiments require systematic peptide extraction to achieve
successful analysis. Peptidomic analysis employs many pro-
teomics techniques but with a different target. Rather than
examining a sample for which intact proteins are present,
peptidomics examines which endogenous protein fragments
are present. This review describes applications of peptidomics
and modern approaches for peptide extraction, fractionation,
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detection, quantification, functional annotation, and struc-
tural prediction.

2 Applications of peptidomics

The applications of peptidomics include comprehensive map-
ping of food protein digestion, characterizing food-processing
related proteolysis, identifying peptide biomarkers of disease,
and identifying hormones and other signaling molecules.
This section reviews the current range of applications for
the field of peptidomics.

2.1 Peptidomics of digestion

Peptidomics is being applied to study how dietary proteins
are catabolized in the digestive system and throughout the
body. Many proteins and protein fragments (peptides) survive
intact throughout the entire digestive process and are excreted
in urine and stool [2, 3]. For example, after feeding milk or
yogurt to adult humans, casein peptides were identified in
the stomach, duodenum, and plasma [4].

Dietary protein digestion has been followed in a number of
studies [5–9]. Prior to the emergence of MS-based peptidomic
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techniques, food protein digestion was examined with
techniques such as HPLC followed by Edman sequencing.
For example, these techniques were used to show release of
opioid peptides in casein-fed miniature [7] and the persis-
tence of functional milk peptides in the plasma of calves [10]
and human infants [11] after milk or formula feeding.

Advances in MS have allowed major leaps in the examina-
tion of peptides released in digestion. For example, Boutrou
et al. [8] employed LC-MS to identify thousands of milk
protein-derived peptides in the jejunums of adult humans
after casein and whey consumption. Bauchart et al. [9] identi-
fied 26 food-derived peptides (some being known antihyper-
tensives) in the duodenums and jejunums of pigs fed beef
and trout proteins. Research studies employed peptidomics
to reveal that hundreds of peptides are released in gastric
digestion of human milk in human infants [5], that milk pro-
tein digestion begins within the mammary gland due to milk
proteases in humans [12] and bovine [13] and that this ini-
tial mammary gland milk degradation varies between healthy
and mastitic quarters (teats) of cows [14].

Released protein fragments in the gut are not always bene-
ficial. For example, peptides released from the wheat protein
�-gliadin survive digestion to the colon, trigger the opening
of the tight junctions between the cells, and lead to inflam-
mation [15]. Likewise, fragments of many other food proteins
can elicit allergenic responses.

Already, peptidomic analysis has revealed that different
food preparation methods, such as cooking, gelation, fer-
mentation, etc., have major effects on the release of dietary
peptides in digestion. For example, MS-based peptidomics
revealed that heat-treated caseins released more peptides in
a simulated infant digestion than non–heat-treated caseins
[15] and that rennet-gelled milks released three times fewer
peptides than acid-gelled milks in digestion by miniature pigs
[16]. Investigating the interaction between the digestion pep-
tidome and food structure will become increasingly impor-
tant to understanding health properties of diet.

2.2 Peptidomics of food hydrolysates

Conventional food processing releases peptides from food
proteins, and these peptides can be examined with pep-
tidomics. For example, in cheese production, casein proteins
are often curdled through the use of exogenous enzymes
(typically rennet). Peptide sequencing and MS analysis have
revealed the exact sites of rennet cleavage on �-casein [17],
�s1- [18], �s2- [19, 20], and �-casein [20].

Bacteria used in cheese ripening also produce proteases
that further degrade the cheeses [21, 22]. Peptidomics data
enables examination of the cleavage sites and peptides pro-
duced by these bacterial interactions. For example, Miclo et al.
[23] employed MS-based peptidomics to identify casein pep-
tides (including many bioactive sequences) released by pro-
teases produced by six Streptococcus thermophilus strains used
in cheese and yogurt production.

Peptidomic technologies have already been applied to iden-
tify hundreds of peptides from several cheeses, including
Parmigiano–Reggiano [24], Emmental [25], Gouda [26], and
cheddar [27]. Peptidomics reveals that differences in cheese
production starting materials, coagulation, and ripening re-
sult in major differences in peptides released across cheeses.

The fermentation process of many other foods releases
peptides as well (e.g., kefir [28]). Peptidomics can be applied
to all food hydrolysates to identify which peptides have been
released during production. Once the released fragments are
identified, they can be also be examined for potential func-
tional activity.

Allergenic food proteins (e.g., wheat gluten, caseins, �-
lactoglobulin) can be hydrolyzed to decrease their allergenic-
ity. Peptidomics can be applied to monitor the extent of degra-
dation to ensure allergenic epitopes are eliminated [29–32].

2.3 Peptidomics for biomarker search

Perhaps the most frequent use of peptidomics thus far has
been in search of biomarkers of disease. Peptidomics is ap-
pealing for biomarker studies because the knowledge that
is generated can present a dynamic view of health status:
peptides are created by a complex and fluid interaction of
proteases, activators, inhibitors, and protein substrates. A va-
riety of peptide biomarkers have been identified. For example,
levels of a fragment of �-amyloid (�-amyloid 1–42) and tau
protein in cerebrospinal fluid can predict which patients with
mild cognitive impairment will progress to Alzheimer’s dis-
ease [33]. Combinations of urine peptides have been shown
to serve as biomarkers (reviewed in depth in [34]) for diabetic
nephropathy [35, 36], chronic kidney disease [37], acute kid-
ney injury [38], acute renal allograft rejection [39,40], prostate
cancer [41], and coronary artery disease [42]. The application
of peptidomic analysis to identify biomarkers of disease has
been thoroughly reviewed in a number of articles [43–45].

Many biological systems (including blood and digestive
samples) contain proteases or contain organisms (e.g., bac-
teria) that can produce proteases. In order to use peptides
for biomarkers, postsample collection proteolysis should be
eliminated (protease inhibition) or adequately accounted for
in these sample types, as discussed by Diamandis [46]. How-
ever, some biological samples, such as urine, are more stable
and thus do not require additional treatment to prevent prote-
olysis [37, 47]. Therefore, these samples can be used without
protease inhibitory treatment [48].

2.4 Endogenous peptides as functional units

Besides peptides released from the dietary proteins due to
fermentation or digestion, a variety of hormones and other
signaling molecules in the body are active endogenously as
sequence and structure-specific peptides. For example, the
largest class of neuroactive messengers in animals is that
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of the endogenous peptides called neuropeptides [49]. Neu-
ropeptides act as neurotransmitters, neurohormones, or neu-
romodulators, and are involved in the regulation of many, if
not all, physiological processes in animals [50]. Most neu-
ropeptides are small, ranging from a few to 100 amino acids
in length [50].

Small endogenous peptides are essential for most, if
not all, physiological processes. Many hormones are en-
dogenous peptides (e.g., insulin, prolactin, oxytocin). These
hormone peptides are often modified by disulfide bridges,
N-terminal pyroglutamination, N-terminal acetylation, or
C-terminal amidation [51,52], which protect the peptide from
degradation by amino- and carboxypeptidases [49]. The pres-
ence of these modifications can serve as a good predictor of
hormone function for novel endogenous peptides [53].

Peptidomic identification of hormones and other peptide
signaling molecules has been highly successful. Specific tis-
sues, cells, and even organelles have been isolated and ana-
lyzed by MALDI-MS allowing identification of hundreds of
hormones and neuropeptides [50, 54, 55].

Short open reading frame-encoded polypeptides (SEPs)
have been found through a combination of transcriptomic
library building and peptidomics to confirm translation [56].
Ninety SEPs (polypeptides synthesized on the ribosome with
<150 amino acids) were found in human cells arising from
noncoding ribonucleic acid and multicistronic mRNAs [56].
Many have functions; for example, SEPs as short as 11 amino
acids regulate morphogenesis in Drosophila [57].

3 Peptide extraction and fractionation

Identification and quantitation of molecules from complex
biological matrices using MS typically requires selective en-
richment of the compounds of interest. Biological matrices
usually contain lipids, salts, proteins, and carbohydrates that
decrease the ionization efficiency of the peptides and may
cause fouling problems in the LC platforms. The preparative
toolbox for peptide extraction is highly diverse and has been
guided, in part, by proteomic approaches.

The proteinaceous fraction in biological samples is a con-
tinuum that ranges from high-molecular-weight proteins and
peptide aggregates [58] to low-molecular-weight peptides. The
low-molecular-weight fraction also represents a continuum of
sizes, from 1 to 10 KDa [59] to only a few amino acid residues
[60]. SEC [61] allows isolation of specific peptide mass ranges;
however, this technique is time-consuming. Other simpler
techniques, like molecular weight cutoff membrane filtra-
tion, do not permit complete separation of a specific mass
range without partial losses of peptides and/or partial con-
tamination from the undesired fractions. However, the sim-
plicity of this approach drives its use in most rapid preparative
methodologies for separation of the low-molecular-weight
and high-molecular-weight fractions. Filtration can be per-
formed with membranes at various scales—from lab-scale
applications [62,63] to large-scale industrial applications [64].

Proteins can also be removed by selective precipitation.
Acid addition (e.g., using trichloroacetic acid [12]), the use of
different organic solvents [65] or combinations of these pre-
cipitation agents [66] are often used for this purpose. How-
ever, protein precipitation does not remove proteins as com-
pletely as membrane filtration [67], and some peptides may
aggregate and be lost in the precipitate [68]. Critical com-
parisons of protein removal methods for different biological
samples can be found in the literature [69, 70].

For many biological samples where proteases are active, it
is necessary to prevent any further proteolytic action as soon
as the samples are collected. Methods for curtailing protease
activity include protein denaturation (e.g., by addition of sol-
vents like acetone [71], addition of acids like trichloroacetic
acid [72], microwave irradiation [73]), or the addition of pro-
tease inhibitors [74]. Importantly, protease inhibitors should
be selected that do not modify the peptide structure and added
in concentrations that do not mask the peptide signal in the
mass spectrometer [75]. Notably, some samples are more sta-
ble (e.g., urine) and require only normal sample storage at
−20 ̊C or −80 ̊C for preservation [48].

Peptides vary in multiple aspects, such as size, hydropho-
bicity, and net charge. This physicochemical diversity is in-
creased by PTMs, including oxidation, acetylation, phospho-
rylation, and glycosylation. As a consequence of this natural
diversity, achieving comprehensive isolation of peptides from
a complex mixture with a single purification method is chal-
lenging, and some physicochemical biases in the purification
are expected. To alleviate this problem, multiple peptide pu-
rification methods can be used sequentially on the same sam-
ple [76], however this strategy increases sample preparation
and analysis time and likely limits the reproducibility of the
method.

A variety of methods are available for enrichment of spe-
cific peptide fractions. These approaches are applied to sim-
plify the complexity of the sample, overcome the dynamic
range limitations of the analytical instrument, or to extract
a fraction of interest. Several extraction protocols have been
developed to purify peptides containing specific amino acid
residues including cysteine [77, 78], tryptophan [79], or me-
thionine [80]. A variety of methods are available to isolate or
enrich phosphopeptides, all based on the differential inter-
action of phosphopeptides with metals, including titanium
dioxide [81]. Adenosine triphosphate used as the metal car-
rier was recently shown to provide highly sensitive and se-
lective phosphopeptide extraction [82]. Glycopeptides have
been extracted from complex samples by numerous meth-
ods. Hydrophilic liquid interaction chromatography-based
glycopeptide extractions use different stationary phases, in-
cluding microcrystalline cellulose [83], zwitterionic materi-
als, [84], and Click chemistry-bound monosaccharides [85].
Glycopeptides can also be extracted with materials based
on boronic [77] and hydrazine [86] chemistries. Lectins
are also commonly used to enriched glycopeptides con-
taining specific monosaccharides in their glycan moiety
[87].
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4 Analytical approaches

A wide variety of MS techniques have been employed in pep-
tidomics. Both ESI [5], MALDI [54] and SELDI [88] sources
have been successfully applied for peptidomics. MALDI and
ESI-based peptidomics approaches have been compared pre-
viously [54, 89]. Both LC [5] and CE [36, 90, 91] have been
employed for front-end in line separation [36] in peptidomics
(reviewed in [5, 54]). Peptidomics has been successfully car-
ried out using a variety of mass spectrometers, including orbi-
traps [92], quadrupole time-of-flight [5], and micro-TOF [36].
This review does not cover all the traditional MS techniques,
as they have been thoroughly described in the following arti-
cles ([5,93]). Rather, we examine new technological advances
in MS that are applicable to peptidomics.

4.1 Fragmentation approaches

In proteomics, the chances of having peptides with close
molecular masses are increased with the complexity of the
sample. This factor is especially critical in peptidomics as the
number of potential peptide identities can be orders of mag-
nitude larger than in the most complex shotgun-proteomics
experiment. Instrument mass resolution is fundamental
to reduce the number of possibilities during the peptide
identification process and minimize the assignment errors.
However, accurate mass alone is often insufficient to iden-
tify peptide sequences. Therefore, peptidomics requires in-
strumentation capable of tandem fragmentation to provide
additional information for sequencing.

The most commonly used fragmentation technique for
peptidomics is CID. In addition to CID, electron transfer dis-
sociation (ETD) and high-energy CID can fragment peptides
for sequence analysis, and each generates slightly different
results [92]. Shen et al. [92] showed that a combination of
these three approaches provided a more complete profile.

CID alone works poorly for glycopeptides, as it preferen-
tially causes fragmentation of the more labile glycosidic bonds
without fragmentation of the peptide backbone necessary for
sequence determination [94]. ETD fragmentation is driven by
chemical specificity, rather than bond energetics, and pref-
erentially fragments the peptide backbone of glycopeptides,
which enables sequence determination. An increasingly com-
mon approach for glycopeptide analysis combines ETD and
CID to collect information on both the peptide backbone and
the glycan [95].

4.2 Direct tissue/cell/organelle MALDI-TOF analysis

Isolated tissues, single cells, and organelles can be affixed
to a MALDI target plate mixed with a matrix that facilitates
ionization and analyzed directly for peptides (as reviewed in
[54,55,89]). Peptides are identifiable even in these complex bi-
ological mixtures due to their high ionization efficiencies [54].

This technique can provide fast, sensitive, and accurate iden-
tification of peptides [96]. Use of MALDI-TOF–based direct
analysis of single cells has led to the discovery of hundreds of
neuropeptides [50, 55].

4.3 Imaging mass spectrometry

Imaging mass spectrometry (IMS) allows molecular analysis
of tissue samples with spatial resolution. Although IMS is
possible with different ionization sources, MALDI is the most
widespread [97]. In MALDI-IMS, upon laser impact at specific
locations on the target plate, molecules are desorbed from the
sample, allowing spatial mapping of compounds. For peptide
analysis, sample slices are usually washed to remove lipids
and salts [98] and treated with ionic matrices like gentisic acid
[99], CHCA derivatives [100], and others specifically developed
for IMS applications [101].

Even before the peptidomic concept was defined, IMS was
used to identify, with spatial resolution, endogenous pep-
tides present in specific tissue locations [97]. Peptides are
obvious targets for IMS because of their high ionization ef-
ficiency and convenient mass range. IMS-based peptidomics
has been particularly useful in neurobiology. IMS has been
used to characterize the neuroendocrine peptidome of crus-
taceans [102] and mammals [103,104], and to identify peptide
biomarkers of neurodegenerative diseases [105, 106].

4.4 Ion mobility mass spectrometry

Ion mobility mass spectrometry (IM-MS) provides millisec-
ond time-scale separation of compounds based on their cross-
sectional area and resulting mobility along a drift tubes with
subsequent mass detection [107]. IM-MS can be combined
with LC to increase the number of separation dimensions.
IM-MS can resolve isobaric and isomeric—often indistin-
guishable by other MS techniques—according to their shape.
IM-MS has been used to distinguish between isomeric pep-
tides differing in the amino acid sequence [108,109] and even
between peptides with different amino acid stereoisomers
(i.e., D versus L) [110]. IM-MS even allows differentiation
of specific phosphorylation sites in multiply phosphorylated
peptides [111]. The capability of IM-MS to determine the po-
sition of PTMs within the peptide sequence has been demon-
strated for other modifications such as methylation [112] and
glycosylation [113]. This technique has been applied to dif-
ferentiate between conformations of peptide aggregates in
neurodegenerative diseases [114].

5 Quantification

The quantification of minute differences in peptide amounts
between samples is one of the most important and
challenging tasks in peptidomics. Both labeled (isotopic and
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isobaric) and label-free quantification can be employed in
peptidomics.

5.1 Label-free quantification

Label-free peptide quantification can be performed by extract-
ing peptide signal intensities or by spectral counting. The ion
signal intensity approach uses the extracted chromatographic
area to compare peptide abundances across samples. Spec-
tral counting totals the number of times a peptide is selected
for fragmentation and identified in a data-dependent acqui-
sition experiment. Even though label-free quantitation often
is considered less quantitative [115], it has a number of ad-
vantages: it requires no additional sample preparation, allows
use of smaller sample amounts (as no chemical reaction step
is needed), and can be performed with almost any analytical
platform. Label-free approaches have been used to discover
new biomarkers for Crohn’s disease [116] and kidney dys-
functions [117].

5.2 Isobaric labeling

Isobaric labeling allows for multiplexing many samples in
a single analysis, which improves throughput and enables
more precise quantification due to the co-ionization of the tar-
get peptides [118, 119]. The major isobaric labeling schemes
are iTRAQ [118] and Tandem Mass Tags [119]. Though ap-
plied extensively in proteomics, these techniques have been
applied in only a few peptidomics research studies (e.g., in
neuropeptidomics [120]).

5.3 Isotope labeling

Quantification by MS is often performed with isotopically
labeled samples. The advantage of isotope labeling over iso-
baric labeling is that peptide fragmentation is not required to
perform the quantification. As the cycle time of automated
MS/MS usually does not allow fragmentation of all peptides
in a sample, isotope labeling allows, at least initially, the quan-
tification of more peptides. On the other hand, the isotopically
labeled spectra are more complex as the number of ion sig-
nals increases with the use of isotopes. Several isotopic label-
ing strategies can be used to quantitate endogenous peptides,
including SILAC culture, ICAT, and 4-trimethyl-ammonium-
butyryl [121]. The use of SILAC culture has been successfully
used in peptidomics to study intracellular proteolytic pro-
cesses [122].

5.4 Single- and multiple-reaction monitoring

Once peptide sequences have been identified, MRM allows
quantification based on detection of specific products formed

during the peptide ion dissociation. MRM, typically applied
with triple quadrupole instruments, has been extensively
used in protein quantification and is highly sensitive and spe-
cific. Although MRM is, at least initially, a label-free quantita-
tion methodology, it is usually combined with stable isotope
dilution in order to obtain absolute quantitative information.
The method has been applied for peptide biomarker quan-
tification of different diseases in serum [123–125] and urine
[126, 127] as well as quantification of bioactive peptides in
food [60]. A major disadvantage of MRM-based quantifica-
tion is that peptide sequences must be identified a priori in
order to determine transitions to measure.

6 Peptide spectral identification
techniques

Bottom-up proteomics employs proteolytic enzymes with
high specificity such as trypsin, which allows searching
against only peptides matching those specificity patterns. In
peptidomic analysis, peptides are cleaved by an array of often-
unknown endogenous proteolytic enzymes, which requires
searching against all possible peptide fragments, greatly ex-
panding the search space.

Peptide spectral databases [128, 129] are also a ubiquitous
tool in bottom-up proteomics but are seldom used for pep-
tidomics. The majority of data in spectral libraries are gen-
erated from site-specific enzyme digestion making the data
sets difficult to leverage for peptidomics.

6.1 Database searching vs. de novo identification

Database searching matches tandem spectra by comparison
to theoretical spectra derived from predicted peptides in a
protein library. De novo identification, on the other hand,
uses no sequence library—rather, sequences are identified
by calculating mass differences between fragments.

Database search engines include X!Tandem [130], Mascot
[131], SEQUEST [132], MS-GFDB [133], MS-Fit [134], and
OMSSA [135]. To use these programs for peptidomics, how-
ever, a “no enzyme” setting is required. De novo sequencing
programs include UStags [136], Peaks [137], PepNovo [138],
Sherenga [139], DirecTag [140], and MS-Tag [141]. A few re-
cent programs combine both the database and de novo ap-
proaches. For example, OpenSea and DirecTag identify de
novo–derived sequence tags and align them against the pro-
tein database [142]. Peptidomics analysis programs are thor-
oughly reviewed in [120].

6.2 Searching for PTMs

Most proteomic software adaptable to peptidomic analysis
can search for simple PTMs such as phosphorylation, deami-
dation, and oxidation. However, few software platforms can

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



6 D. C. Dallas et al. Proteomics 2014, 00, 1–13

identify endogenous peptides with more complex modifica-
tions such as glycosylation. Several programs successfully
identify glycopeptides from tryptic digests or pronase digests
of several proteins, but these programs typically cannot ad-
dress complex biological mixtures of endogenously cleaved
glycopeptides as reviewed by Dallas et al. [143]. Progress is
being made in this area, however. For example, Byonic allows
the combination of CID with ETD to determine glycopeptide
sequence and glycan composition [144].

Conventional proteomic spectral matching algorithms are
typically incapable of identifying novel peptide modifications.
However, several de novo–based algorithms can provide a so-
lution for this problem. Spectral Networks [145] and TagRe-
con [146] can identify unknown modifications by spectral
clustering combined with de novo analysis. Spectral cluster-
ing combines groups of tandem spectra identified by peak
similarity to create a single consensus spectrum represent-
ing the most abundant spectral features shared by all related
spectra [147]. De novo analysis is then used to provide deeper
feature coverage, and examination of the differences in mass
between compounds in a spectral network allows identifica-
tion of novel PTMs. This approach revealed a large number
of diverse modifications in eye lens crystallin [148].

7 Data Analysis

Once endogenous peptides in a system have been identified,
techniques for mining the data are essential. Typically, pep-
tidomics researchers need methods to (1) compare peptide
quantities between sample groups; (2) visualize the peptide
data in the context of the protein sequence; (3) analyze the
data for which enzymes released them from the intact protein;
(4) predict peptide structure; and (5) predict peptide function.

7.1 Detecting differences

Differences in specific peptide peak areas across sample
groups are typically determined with basic statistical tests,
such as t-tests or ANOVA. Several programs such as XCMS
[149] and Agilent Mass Profiler Professional [150] have built
in statistical comparisons and can be applied to peptidomics.
For many sample types, data normalization is essential be-
fore statistical comparisons. For example, urine peptidomics
data must be normalized (e.g., to creatinine) to control for
large concentration variations due to differences in daily fluid
intake [48].

7.2 Site visualization

Mapping where the fragments from a protein derived in re-
lation to the overall sequence can support biological insight
into the enzymatic processes occurring in a system. Pep-
tide coverage diagrams [50, 151, 152] allow visualization of

peptide–protein relationships by highlighting observed se-
quence regions or by overlaying lines indicative of coverage.
For data sets with extensive and overlapping peptide coverage,
these maps become crowded and less informative. A strat-
egy to clarify trends in coverage diagrams is to map peptide
spectral intensity to the coverage map. This simultaneously
diminishes extraneous near-baseline peaks while promoting
visibility of high abundance peptides that may contribute sig-
nificantly to the biological function. As far as we know, only
one program exists for this purpose: PepEx [153]. PepEx was
used to map the endogenous peptides in human milk and
revealed that the release of peptides was highly specific to
regions of the parent protein [153].

7.3 Enzymatic mapping

Peptidomics data can be used to assess which enzymes re-
leased the fragments from the protein precursor by evalu-
ating the observed peptides against a proteolytic specificity
library. Several programs currently exist for this type of anal-
ysis. The online tool EnzymePredictor [152] compares known
specificity patterns of a list of common proteases to peptide
cleavage sites and calculates the likelihood an enzyme’s par-
ticipation in proteolysis. Another program for enzyme anal-
ysis is Proteolytic Enzyme Estimator [13, 153]. This program
functions similarly to EnzymePredictor, but uses peptide in-
tensity rather than peptide count in estimation of relative
enzyme activity. Proteasix predicts which enzymes were in-
volved in peptide release by comparing peptide sequences
around cleavage sites to a cleavage site database containing
3500 human protease–cleavage site combinations [154]. Be-
cause proteolytic specificity is often broad, and peptides can
be produced with contributions from nonspecific exopepti-
dases, this informatic approach can only estimate enzyme
activity [153]. Ideally, bioinformatic enzyme analysis based
on the peptidomics data would be paired with chromogenic
substrate assays for each enzyme. In these assays, a short
sequence of amino acids specific to a protease’s cleavage
specificity are added to a solution, and the release of a chro-
mogenic leaving group (e.g., p-nitroanilide) can be measured
spectrophotometrically to determine enzyme activity.

7.4 Peptide structure predictions

Predicting peptide three-dimensional structure from the
amino acid sequence and PTMs is important in peptidomics
research because peptide structure affects function. Sev-
eral experimental techniques, including x-ray crystallography
[155] and NMR [156], can determine peptide structure. As
these experiments are expensive and time-consuming, pre-
dicting peptide structure with bioinformatics will become in-
creasingly essential for peptidomics.

Programs like Pepstr [157], PEP-FOLD [158, 159], and Pe-
pLook [160,161] are designed for peptides and produce better
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structural predictions for peptides than protein-centric pro-
grams. Pepstr [157] provides de novo structural prediction of
small peptides. This program combines secondary structure
and �-turn predictions, and refines the structure with energy
minimization and molecular dynamic simulations [157]. The
resulting predicted structures are typically similar to NMR-
derived structures. PEP-FOLD [158, 159] performs de novo
peptide structure predictions for linear peptides as well as
cyclic peptides with disulphide bonds. PepLook [161] per-
forms ab initio peptide structure prediction of linear and
cyclic peptides. This algorithm allows for multiple structural
results for a single peptide, as peptide structures are less
stable than protein structures.

7.5 Peptide function predictions

Functional peptides have a wide range of biological activi-
ties. For example, bioactive peptides from milk have actions
including antimicrobial, antihypertensive, antithrombotic,
and immunomodulatory [162]. Predicting peptide function
is challenging because peptides with similar functions might
have very different sequences and structures.

One method for predicting peptide function is through a
simple homology search against a database of known func-
tional peptide sequences. Several databases of functional pep-
tides exist, including SwePep [163], Erop-Moscow [164], and
PeptideDB [165]. Peptides identified in a sample that are
highly homologous with library sequences may have simi-
lar functions.

8 Conclusions

Peptidomics is an expanding new field with a variety of ap-
plications including monitoring digestion, annotating food
hydrolysates, characterizing hormone levels and identifying
disease biomarkers. Innovations in peptide extraction, de-
tection, and analysis are improving peptidomics throughput,
accuracy, and utility.

Peptidomics will continue to advance with faster instru-
ment electronics to facilitate the isolation, fragmentation, and
detection of more peptides in less time, as well as more sen-
sitive detectors that will allow the detection of less abundant
peptides and, after fragmentation, the detection of less abun-
dant fragment ions.

There is a variety of issues in peptidomic analysis that
still need to be addressed. Improved software for identifica-
tion of peptides with complex modifications is necessary. For
example, software that adequately identifies endogenous gly-
copeptides from complex biological mixtures remains lack-
ing [143]. Software for peptide functional prediction remains
in its infancy, yet will become increasingly important with
the large peptide data sets now being produced. Several pro-
grams now provide estimates of peptide structure based on
sequence, and these can be applied to large peptidomics data

sets. However, methods for accurate analytical structure de-
termination (e.g., x-ray crystallography, NMR, and circular
dichroism) are typically applied to isolated peptides and have
not yet been applied to measure complex peptide mixtures
in high-throughput. Strategies for structural determination
in-line with LC-MS would be promising.

Traditionally, intact proteins have been considered as the
functional units in vivo. However, most proteins undergo
proteolytic processing such as auto-activation or degrada-
tion by enzymes [166]. Therefore, often, protein fragments
are produced that can interact directly with the cellular tar-
gets, producing a functional effect. Even if a peptide occurs
for only a short time before further degradation, it may
still transmit a signal [167]. Therefore, mapping even tran-
sitory peptides can be important for understanding complex
protein/peptide–health interactions. With the advance of pep-
tidomics, we can now monitor peptide release across time
and physiological/sub-cellular location to reveal their roles in
complex biological interaction networks.

With the recent realization that peptides can have
important functions—both beneficial and detrimental—
throughout the body, peptidomics will become increasingly
important in monitoring how dietary proteins are digested.
Food producers will soon need to employ peptidomics to char-
acterize not only what peptides and proteins are in their food
products, but also what they become in the digestive tract of
the consumer.
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cation of low-molecular-weight peptides from Emmentaler
cheese. J. Food Sci. 2002, 67, 553–559.

[26] Toelstede, S., Hofmann, T., Sensomics mapping and iden-
tification of the key bitter metabolites in Gouda cheese. J.
Agric. Food Chem. 2008, 56, 2795–2804.

[27] Gupta, A., Mann, B., Kumar, R., Sangwan, R. B., Identifica-
tion of antioxidant peptides in cheddar cheese made with
adjunct culture Lactobacillus casei ssp. casei 300. Milchwis-
senschaft 2010, 65, 396–399.

[28] Quirós, A., Hernández-Ledesma, B., Ramos, M., Amigo, L.
et al., Angiotensin-converting enzyme inhibitory activity of
peptides derived from caprine kefir. J. Dairy Sci. 2005, 88,
3480–3487.

[29] El-Ghaish, S., Rabesona, H., Choiset, Y., Sitohy, M. et al.,
Proteolysis by Lactobacillus fermentum IFO3956 isolated
from Egyptian milk products decreases immuno-reactivity
of �S1-casein. J. Dairy Res. 2011, 78, 203–210.

[30] Lisson, M., Lochnit, G., Erhardt, G., Genetic variants of
bovine �-and �-casein result in different immunoglobulin
E-binding epitopes after in vitro gastrointestinal digestion.
J. Dairy Sci. 2013, 96, 5532–5543.

[31] Lisson, M., Lochnit, G., Erhardt, G., In vitro gastrointestinal
digestion of bovine alpha-S1 and alpha-S2 casein variants
gives rise to different IgE-binding epitopes. Int. Dairy J.
2014, 34, 47–55.

[32] Lisson, M., Novak, N., Erhardt, G., Immunoglobulin E epi-
tope mapping by microarray immunoassay reveals differ-
ences in immune response to genetic variants of caseins
from different ruminant species. J. Dairy Sci. 2014, 97,
1939–1954.

[33] Riemenschneider, M., Lautenschlager, N., Wagenpfeil, S.,
Diehl, J. et al., Cerebrospinal fluid tau and �-amyloid 42
proteins identify Alzheimer disease in subjects with mild
cognitive impairment. Arch. Neurol. 2002, 59, 1729–1734.

[34] Zürbig, P., Dihazi, H., Metzger, J., Thongboonkerd, V. et al.,
Urine proteomics in kidney and urogenital diseases: Mov-
ing towards clinical applications. Proteomics Clin. Appl.
2011, 5, 256–268.

[35] Rossing, K., Mischak, H., Parving, H.-H., Christensen, P. K.
et al., Impact of diabetic nephropathy and angiotensin II
receptor blockade on urinary polypeptide patterns. Kidney
Int. 2005, 68, 193–205.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com

http://dx.doi.org/10.1016/j.idairyj.2014.09.006
http://dx.doi.org/10.1016/j.idairyj.2014.09.006


Proteomics 2014, 00, 1–13 9

[36] Alkhalaf, A., Zürbig, P., Bakker, S. J. et al., Multicentric vali-
dation of proteomic biomarkers in urine specific for diabetic
nephropathy. PLoS One 2010, 5, e13421.

[37] Good, D. M., Zürbig, P., Argiles, A., Bauer, H. W. et al., Nat-
urally occurring human urinary peptides for use in diagno-
sis of chronic kidney disease. Mol. Cell Proteomics 2010, 9,
2424–2437.

[38] Metzger, J., Kirsch, T., Schiffer, E., Ulger, P. et al., Urinary
excretion of twenty peptides forms an early and accurate
diagnostic pattern of acute kidney injury. Kidney Int. 2010,
78, 1252–1262.

[39] Ling, X. B., Sigdel, T. K., Lau, K., Ying, L. et al., Integra-
tive urinary peptidomics in renal transplantation identifies
biomarkers for acute rejection. J. Am. Soc. Nephrol. 2010,
21, 646–653.

[40] Sigdel, T. K., Ling, X. B., Lau, K. H., Li, L. et al., Urinary pep-
tidomic analysis identifies potential biomarkers for acute
rejection of renal transplantation. Clin. Proteomics 2009, 5,
103–113.

[41] Theodorescu, D., Schiffer, E., Bauer, H. W., Douwes, F. et al.,
Discovery and validation of urinary biomarkers for prostate
cancer. Proteomics Clin. Appl. 2008, 2, 556–570.

[42] Zimmerli, L. U., Schiffer, E., Zürbig, P., Good, D. M. et al.,
Urinary proteomic biomarkers in coronary artery disease.
Mol. Cell Proteomics 2008, 7, 290–298.

[43] Schrader, M., Selle, H., The process chain for peptidomic
biomarker discovery. Dis. Markers 2006, 22, 27–37.

[44] Tammen, H., Hess, R., in: Bäckvall, H., Lehtiö, J. (Eds.), The
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