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ABSTRACT

Oligosaccharides in human milk strongly influence the composition of the gut microflora of neonates. Because it is now clear that the microflora

play important roles in the development of the infant immune system, human milk oligosaccharides (HMO) are studied frequently. Milk samples

contain complex mixtures of HMO, usually comprising several isomeric structures that can be either linear or branched. Traditionally, HMO

profiling was performed using HPLC with fluorescence or UV detection. By using porous graphitic carbon liquid chromatography MS, it is now

possible to separate and identify most of the isomers, facilitating linkage-specific analysis. Matrix-assisted laser desorption ionization time-of-

flight analysis allows fast profiling, but does not allow isomer separation. Novel MS fragmentation techniques have facilitated structural

characterization of HMO that are present at lower concentrations. These techniques now facilitate more accurate studies of HMO consumption

as well as Lewis blood group determinations. Adv. Nutr. 3: 406S–414S, 2012.

Introduction
Human milk is the sole source of nutrition for neonates dur-
ing their first period of life. Over centuries, human milk is
evolutionary shaped to nourish the newborn (1,2) and is re-
garded as the nutritional gold standard for term infants. In-
deed, several benefits of breastfeeding have been described
for term infants (3). Human milk is composed of lactose,

lipids, free oligosaccharides, and proteins, of which the
free oligosaccharides are important constituents at a concen-
tration ranging from 5 to 23 g/L (4–6).

Free oligosaccharides in human milk are linear and
branched structures of 3 to 14 monosaccharides (7,8).
More than 200 free oligosaccharide structures have so far
been identified from human milk samples (7–10). Nearly
all of them originate from a lactose [Gal(b1–4)Glc] core
that is extended with N-acetyllactosamine repeats. These re-
peats can either be linked Gal(b1–3)GlcNAc, type I or Gal
(b1–4)GlcNAc, type II. The linear or branched structures
thus formed can be decorated with fucose and/or N-acetyl-
neuraminic acid, where the N-acetylneuraminic acid resi-
dues may be attached either with an (a2–3) or an (a2–6)
linkage.

A close relationship exists between the Lewis blood group
system and the structures of human milk oligosaccharides
(HMO)4 found in an individuals’ milk (11,12); fucose resi-
dues are attached to HMO according to the expression of
both the secretor gene (fucosyltransferase 2) and the Lewis
gene (fucosyltransferase 3) (13). Fucose residues may be
a1–2 linked to galactose residues when fucosyltransferase 2
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is active, whereas fucose residues may be a1–4 linked when
fucosyltransferase 3 is active (14,15). Activity of the fucosyl-
transferases is regulated by genetic variation and is thus
inherited.

HMO are the third abundant compound in human milk,
and yet they have no direct nutritional values because they
are not digestible by the human gastrointestinal tract. How-
ever, evolution has shaped the structure of HMO (1,2), so
they must have important functions. Indeed, several studies
showed that HMO are important during the development
of the newborn (1,16–18).). Milk oligosaccharides stimulate
the growth of probiotic bacteria by interfering with the
bacteria-host interactions through several mechanisms (1,16),
thus constituting a prebiotic function. HMO have been
shown to have antiadhesive properties (16). It is proposed
that the oligosaccharides mimic the natural ligands of the
bacteria, thus occupying their natural binding sites and in-
hibiting their adhesion. Such antiadhesive properties have
been described for several bacteria and viruses, including
Streptococcus pneumonia, Listeria monocytogenes, Vibrio chol-
era, Salmonella fyris, HIV, enteropathogenic Escherichia coli,
and Campylobacter jejuni (19–21). C. jejuni is one of the
major causes of diarrhea and was shown to adhere to 29-
fucosyllactosamine (21). Later, it was observed that the inci-
dence of diarrhea in breast-fed infants was directly related to
the levels of 29-fucosyllactosamine in their mother’s breast
milk (22).

Recent studies focused on the consumption of oligosac-
charides by gut bacteria. Several strains of bifidobacteria
can grow well on HMO; however, it was observed that
some strains prefer fucosylated oligosaccharides, whereas
others prefer nonfucosylated structures (23). Similarly, dif-
ferent galacto-oligosaccharide polymers were consumed dif-
ferently by bifidobacteria strains (24). Marcobal et al. (25)
reported recently that milk oligosaccharide consumption is
not specific for bifidobacteria, but can also be observed for
bacteroides species.

Overall, it may be concluded that HMO have a strong in-
fluence on the composition of the gut microflora. It is pro-
posed that a well-balanced intestinal microflora is important
for the development of the infant’s immune system (26), in-
dicating that HMO play an important role in the infants
well-being.

To allow further evaluation of the role of HMO in the de-
velopment of infants, methods to characterize these struc-
tures both in-depth and on a larger scale are necessary.
Traditionally, milk oligosaccharide analysis has been per-
formed using NMR, high-pH anion exchange chromatogra-
phy with pulsed amperometric detection, or lectin affinity.
With the introduction of MS for the analysis of oligosaccha-
rides, large numbers of additional analytical techniques
have been applied (27,28), such as hydrophilic interaction
chromatography (10) and porous graphitic carbon (PGC)
(7,8,29) separations with or without coupling to MS or
stand-alone matrix-assisted laser desorption ionization
(MALDI) MS (12). This review aims to give an overview
of the current state-of-the-art analytical techniques used in

milk oligosaccharide analysis and its biological and clinical
implications.

Analysis of HMO
Because HMO are complex structures, of which the
monosaccharide building blocks may be linked at different
locations and with different linkages, resulting in several iso-
mers, complex strategies are necessary for their detailed anal-
ysis. Over the years, several analytical strategies have been
applied, both for profiling and in-depth characterization.

HMO profiling
A nonexhaustive overview of methods used for HMO fin-
gerprinting can be found in Table 1. Traditionally, anion ex-
change chromatography, particularly high-pH anion
exchange chromatography with pulsed amperometric detec-
tion, has been used for the analysis of HMO (11,30–38). Us-
ing anion exchange columns, HMO can be separated,
resulting in separation of several isomers. However, previous
separation of the neutral and acidic oligosaccharides may be
required, resulting in doubled analysis times.

A second mode of separation often used for HMO anal-
ysis is reverse phase (RP) HPLC. Native oligosaccharides are
not retained on RP material because of their hydrophilic
properties, and therefore derivatization is required. Reten-
tion and separation of the HMO on RP liquid chromatogra-
phy (LC) depend thus mainly on the method of derivatization;
some isomer separation was obtained so far, but no method
has emerged that provides comprehensive isomer separation.
Labeling with chromophoric active tags such as 1-phenyl-3-
methyl-5-pyrazolone, 2-aminopyridine, and 2-aminobenzoic
acid as well as perbenzoylation have been applied for the anal-
ysis of HMO. These labels served 2 major purposes. They
provided a chromophore for detection with HPLC and a hy-
drophobic label to allow chromatographic separation in sta-
tionary phases such as C18, which do not normally retain or
separate native oligosaccharides. Additional labels have been
used in the analysis of other oligosaccharides (27,39) and
may also be applicable for the analysis of HMO.

More recently, HMO have been separated using hydro-
philic interaction chromatography HPLC (10), a method
that has already been applied extensively for the analysis of
N- and O-glycans (40–42). The oligosaccharides are labeled
with 2- aminobenzamide using reductive amination to allow
fluorescence detection, but retention is mostly based on the
oliogosaccharide portion, and the elution order is mainly
influenced by the number of monosaccharide residues. Sev-
eral sialylated isomers can be separated.

Electromigration-based separation techniques have also
been applied in the analysis of HMO (43,44). Using micellar
electrokinetic chromatography, native sialylated milk oligo-
saccharides were separated, showing good isomer separa-
tion. For electromigrative separation techniques, charged
analytes are necessary. Therefore, native neutral human
milk oligosaccharides cannot be analyzed using such
techniques.

Advances in HMO analysis 407S
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Methods for separation of permethylated oligosaccha-
rides have also been developed (45). Permethylation is often
used to stabilize oligosaccharides during ionization and to
increase sensitivity. However, because it does requires addi-
tional steps and the analysis can be complicated by incom-
plete derivatization. Standard RP columns such as C18 can
provide some isomeric separation, but it too lacks compre-
hensive separation of isomeric species.

All the analytical techniques described so far are based on
separation alone; however, structural confirmation can in
such cases only be obtained based on standards. These stan-
dards are expensive and not available for all HMO. More-
over, co-elution/migration cannot be excluded. Because
elution or migration is not perfectly identical in all runs
and HMO samples from different donors may have very dif-
ferent patterns, identification of the signals in each of the
samples may be ambiguous. For better identification, cou-
pling of the separation with mass spectrometry has proven
to be effective.

Our laboratory recently introduced nano-LC PGC chip
time-of-flight (TOF) MS in the positive mode for the anal-
ysis of HMO (7,8,46). In this method, good isomer separa-
tion is combined with unambiguous identification using
MS, as illustrated in Figure 1. Both neutral and sialylated
compounds may be separated in 1 run, and, using a library
containing retention time, mass, and fragmentation infor-
mation, immediate identification is possible (7,8). Using
this method, >200 HMO structures can be separated. Re-
duction of the reducing end of the oligosaccharides is neces-
sary because the a- and b-anomers are separated on the
PGC stationary phase.

More recently, a method consisting of capillary electropho-
resis (CE) with laser-induced fluorescence (LIF) coupled to
MS of 8-aminopyrene-1,3,6-trisulfonic acid–labeled milk oli-
gosaccharides was developed (47–49). Labeling of HMO
with 8-aminopyrene-1,3,6-trisulfonic acid introduces a fluoro-
phore for the LIF detection, simultaneously adding the nega-
tive charge needed for the separation. Although good
separation can be achieved using offline CE with LIF using
very fast runs (w9 min), both resolution and separation times
must be compromised when coupling CE toMS (50). The sep-
arations obtained using both offline and online CE with LIF
are depicted in Figure 2. The authors decided to use the offline
CE with LIF method for their clinical applications (47–49).

Compositional profiling of HMO
Although separation allows identification of isomers, it also
is a time-consuming and, in high-throughput studies, rate-
limiting step. Offline MS profiling of HMO using MALDI
TOF MS was first described by Stahl et al. (51), who were
able to observe neutral oligosaccharides in a positive mode
as monosodium adducts as well as acidic oligosaccharides
in both the positive and negative modes. It was noticed
that desialylated fragments could be observed in the acidic
fraction.

More recently, our group developed a strategy using
MALDI Fourier transform ion cyclotron resonance (FTICR)

MS to monitor bacterial consumption of HMO (52). Using
2,5-dihydroxybenzoic acid as the ionizing matrix, neutral ol-
igosaccharides were observed as sodiated adducts. This is il-
lustrated in Figure 3. The high resolution of the FTICR MS
allowed application of deuterium-labeled internal standards,
which was shown to be beneficial for relative quantitation
(23,52,53).

A similar approach was applied recently for the determi-
nation of Lewis blood group by HMO fingerprinting. After
automated oligosaccharide purification, HMO were ana-
lyzed using MALDI TOF with 6-aza-2-thiothymine as the
matrix (12). Neutral oligosaccharides and sialyllactose could
be observed as sodium and potassium adducts in the posi-
tive mode, whereas other sialylated HMO were detected as
deprotonated molecular ions in the negative mode. Using
this method, 93.8% of the samples could be assigned the
correct blood group.

Overall, direct MS strategies may be a fast alternative for
HMO analysis because no separation is needed; however, it
is not possible to distinguish isomeric structures, which may
be necessary, for example, to determine whether only spe-
cific types of linkages are affected.

Structural characterization of HMO
Whereas HMO fingerprinting can provide an overview of
the oligosaccharides present in a given sample, the structural
assignments mostly rely on previous literature or databases,
in which HMO structures have been thoroughly characterized.

Figure 1 Separation of isomers of reduced FS-LNH using
nanoliquid chromatography porous graphitic carbon chip time-
of-flight MS. RT, retention time; FS-LNH, fucosyl-lacto-N-hexaose.
Reprinted from Reference (7) with permission.
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As pure oligosaccharides are needed for structural character-
ization, substantial purification is needed, which often re-
sults in small amounts (picomoles) of material. Offline
MS and NMR (54,55) are most often used for HMO charac-
terization. Although larger amounts of pure oligosaccha-
rides are needed for NMR (typically micromoles of pure
compounds), MS-based fragmentation techniques can be
performed on picomole quantities in complicated mixtures
with the proper LC couple.

Traditionally, fragmentation of HMO has been per-
formed using collision-induced dissociation on a quadru-
pole ion trap MS instrument (56,57) and on FTICR MS
instruments (58–60); an example of a fragmentation spec-
trum for 3 fucosylated HMO is depicted in Figure 4. Frag-
mentation behavior of milk oligosaccharides in both
positive and negative modes has been reviewed extensively
(61,62), and it was observed that cleavages of the glycosidic
bond are most common. It must be noted that glycan re-
arrangements may occur in fragmentation studies performed
by collision-induced dissociation (63).More recently, structural

characterization is also obtained using quadrupole TOF MS
instrumentation (7,8).

Recently, the use of electron capture methods such as elec-
tron transfer dissociation for characterization of reduced and
permethylated milk oligosaccharides was reported (64). It was
observed that electron transfer dissociation resulted mainly in
cross-ring cleavages, allowing unambiguous linkage identifi-
cation. So far, however, only simple, linear or minimally
branched structures have been analyzed. Although the first re-
sults indicate electron transfer dissociation is a promising
complementary fragmentation technique for milk oligosac-
charides, further studies will need to be performed. These
methods remain far from routine with oligosaccharides be-
cause they require multiply charged species, preferably triply
positively charged, which are difficult to produce with nonba-
sic and even acidic milk oligosaccharides.

HMO quantitation
For comparison of milk and feces of mother-baby dyads, as
well as in bacterial consumption studies, accurate (relative)
quantitation of the individual HMO is necessary. Although
fluorescent and UV detection is traditionally regarded to
be more robust for quantitation (65), MS detection requires
more effort for quantitation. Oligosaccharides in mixtures
tend to suppress each other, resulting in different ionization
efficiencies for specific components. For example, neutral
oligosaccharides (those not containing sialic acids) will
tend to suppress sialylated species in the positive mode,
whereas the reverse happens in the negative mode. However,
separating the mixture into individual components pro-
duces responses to ionization and detection that are gener-
ally similar. For most cases, therefore, detector response is
sufficient in LC/MS.

For more accurate quantitation, isotopic labeling is per-
formed (23,52,53). Reduction of the aldehyde with sodium
borodeutoride adds a deuterium to the resulting alditol.
Mixtures can be analyzed by adding a standard mixture
with deuterium to the sample, which has been reduced
with sodium borohydride. With accurate mass instruments
such as FTICR and TOF, quantitation is obtained by com-
paring the monoisotopic peaks of the hydrogenated and
deuterated compounds, subtracting for 13C abundances.
This method is typically used for quantitating oligosaccha-
ride consumption profiles of bacteria (23) or for character-
izing enzymatic properties of glycosidases from bacteria.

Discussion
Recent advances in analytical approaches, especially cou-
pling of PGC separation to MS, allows rapid simultaneous
profiling and quantitation of >100 HMO. Using this ap-
proach, it may now be studied whether HMO-consuming
bacteria have specificities for specific linkage isomers. More-
over, in-depth studies of the relationship between (linkage-
specific) HMO profile and Lewis blood group are now
feasible. Recent studies also focused on the uptake and clear-
ance of HMO by the neonate (35,48). So far, analytical ap-
proaches based on separation with UV or fluorescent

Figure 2 Separation of 8-aminopyrene-1,3,6-trisulfonic acid–
labeled human milk oligosaccharides using capillary
electrophoresis with laser-induced fluorescence (LIF) (A) and
capillary electrophoresis with LIF MS (B). The adjustments
needed for hyphenation with MS result in reduced resolving
power and longer analysis times. MS, however, facilitates direct
identification. Reprinted from Reference (47) with permission.
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detection have been used, which allow monitoring of a max-
imum of 40 structures. Using nano-LC PGC chip TOF MS,
it is now feasible to monitor >100 structures, and combine
data from milk, feces, and urine.

Although current separations using PGC or CE provide
good separation and allow identification of large numbers
of milk oligosaccharides, these techniques require relatively
long analysis times (10–60 min). Current separations occur

on solid interphases, but ions can also be separated on a gas
interphase by ion mobility, under the influence of a weak
electric field (66). Recently, ion mobility coupled to MS
was applied for the separation of N-glycans from patients
with liver cancer and liver cirrhosis (67,68). Clear differ-
ences could be observed in the drift patterns of several N-
glycans. So far, this technique has not been applied in
milk oligosaccharide analysis; however, its use may well

Figure 3 Matrix-assisted laser
desorption ionization Fourier
transform ion cyclotron
resonance MS spectrum of
reduced human milk
oligosaccharides (HMO) using
2,5-dihydroxybenzoic acid matrix
in the positive ionization mode.
Signals originating from HMO
are marked with a diamond.
Reprinted from Reference (52)
with permission.

Figure 4 Differentiation of 3
fucosylated human milk
oligosaccharides (HMO) using
collision-induced dissociation
fragmentation of deprotonated
species in the negative
ionization mode. MS3

fragmentation spectra of m/z
1079 for the 3 fucosylated HMO
(A–C) are depicted together with
fragmentation patterns
explaining the most important
ions. Reprinted from Reference
(56) with permission.
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result in linkage-specific determinations with very short
analysis times (<1 min).

Recently, the use of selective reaction monitoring (SRM)
on triple quadrupole MS was developed as a selective
method for quantitative proteomics. This method has ad-
vantages in both selectivity and sensitivity over traditional
quantitative proteomics (69). Currently, applications of
SRM for glycomics and glycoproteomics are being devel-
oped, and recent studies on quantitation of fucosylated gly-
copeptides (70) as well as bovine milk oligosaccharides (71)
revealed good reproducibility data in terms of quantitation.
Application of SRM strategies in bacterial consumption
studies as well as comparisons of milk and fecal oligosaccha-
rides will probably result in superior quantitative results.

Overall, application of the novel analytical approaches
will greatly enhance our knowledge on the specificities of
bacterial consumption of milk oligosaccharides and allow
better understanding of the interaction between gut micro-
flora (and thus the development of an infant’s immune sys-
tem) and HMO. Such knowledge should facilitate the
development and clinical application of better infant for-
mula as well as personalized formula.
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