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Glycosylation is one of the most important classes of post-translational protein modifications, but the
identification of glycans is difficult because of their branched structures and numerous isomers. We
describe an algorithm called CartoonistTwo that proposes structures for O-linked glycans by automati-
cally analyzing fragmentation mass spectra. CartoonistTwo improves upon previous glycan identification
software primarily in its scoring function, which can more successfully distinguish among a number
of similar structures. CartoonistTwo was designed and tested with FTICR mass spectra, and includes
automatic recalibration and peak selection especially tuned for such data, yet it can be easily adapted
to fragmentation spectra (MS? or MS”) from other instrument types. On a validated test set of 34 SORI—
CID MS” FTICR spectra from Xenopus egg jelly, CartoonistTwo gave the manually determined structural
assignment either the first or second highest score over 90% of the time. And for over 50% of these
spectra, CartoonistTwo selected a unique highest scoring structure that agreed with the manually
determined one.
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1. Introduction

In recent years, identification of proteins by tandem mass
spectrometry has become quite common, but the identification
of post-translational modifications remains a difficult problem.
Especially challenging is the identification of carbohydrate
attachments (glycans), because carbohydrates are themselves
polymeric molecules with the additional complexity that they
are typically branched rather than linear structures. There is,
however, ample reason to pursue improved identification of
glycans by mass spectrometry. Glycosylation is perhaps the
most important of all post-translational modifications. It has
been estimated that over 50% of all eukaryotic proteins are
glycosylated,! and it is well-known that the glycans presented
on cell surfaces are vital for cell—cell communication.? Glycans
define A/B/O blood groups and play roles in autoimmune
disease and cancer, and the loss of a single glycosyltransferase
has even been suggested as the crucial mutation that enabled
human brain expansion.®*

Manual interpretation of fragmentation mass spectra of
complex molecules can be tedious and error prone. We have
developed a tool called CartoonistTwo for rapid and automatic
determination of the structures of detached O-glycans from
fragmentation mass spectra. CartoonistTwo produces a ranked
list of structures that best explain a spectrum, along with
explanations for the ranking, and can be used to determine
the most likely structure or to suggest which additional
experiments (e.g., exoglycosidase experiments) are needed to
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identify the compound more definitively. The current version
of CartoonistTwo determines structures only to the level of
cartoons. A cartoon specifies the composition of monosaccha-
rides and their connectivity (or topology), but not does not
specify the type of bond (e.g., a or ) nor distinguish isomeric
monosaccharides e.g., N-acetyl-p-galactosamine (GalNAc) and
N-acetyl-D-glucosamine (GIcNAc).

CartoonistTwo generates all possible cartoons and ranks
them by score, often with enough discrimination so that there
is a unique highest-scoring cartoon. The high performance of
CartoonistTwo stems from a detailed scoring algorithm with
three well-founded innovations. First, the scorer uses low-
intensity peaks, guarding against the inclusion of noise peaks
by employing a statistical confidence measure based on both
intensity and m/z. Second, the scorer uses not only the peaks
present in the spectrum, but also peaks that are missing—frag-
ments of a proposed structure that do not appear in the
spectrum. Third, it assumes a model of low-energy glycan
fragmentation, which we refer to as “shedding”. In this model,
monosaccharides are cleaved (or shed) from the glycan one at
a time, with the charge remaining with the larger daughter ion.
See Figure 1. This model successfully predicts the peaks actually
observed in spectra produced by FTICR (Fourier Transform Ion
Cyclotron Resonance) mass spectrometry employing either
multiple rounds of SORI-CID (Sustained Off-Resonance Ir-
radiation Collision-Induced Dissociation) or IRMPD (Infrared
Multiphoton Dissociation) fragmentation.’

Several computer programs for identifying oligosaccharides
by tandem MS—typically to the level of cartoons—have been
described in the literature. GlycosidIQ,® GlycoMod,” and Gly-
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Figure 1. Cartoon at the top is a proposed parent structure, and
underneath are some of the possible fragments produced by the
shedding model. The fragments are arranged in a partial order,
or shedding tree, with arrows connecting two structures that
differ by a single monosaccharide.

coSearchMS? are database-search programs. Glycan databases® !
are much less complete than protein databases, especially in
their coverage of O-glycans, and hence glycan database-search
programs do not yet provide the same general utility as protein
database-search programs like SEQUEST!? and Mascot.!3 There
are also several de novo identification programs. StrOligo'*®
handles only N-glycans and exploits the special structure of
those glycans (e.g., the trimannosyl core). STAT'® and GLYCH'”
handle O-glycans as well as N-glycans, but have very basic
scoring functions, and hence often return large numbers of
equally good candidate structures, especially for spectra of
larger glycans. GLYCH was initially demonstrated with only
small, mostly linear, reference oligosaccharides, along with the
higher-energy CID fragmentation used with MALDI-TOF
experiments. Higher-energy CID produces some cross-ring
fragmentation, and hence this program also goes beyond
topology and attempts to identify linkage information.

2. Experimental Section

2.1. Methods. The experimental procedure has been de-
scribed previously.’ In brief, mucin-type O-linked oligosac-
charides were detached and isolated from egg jelly glycopro-
teins of two frog species, Xenopus laevis and Xenopus tropicalis.
The procedure converts the reducing ends of the oligosaccha-
rides to alditols, which confers the side benefit of mass labeling
the reducing-end monosaccharide with an increase of 2.0156
Da (two hydrogen atoms). All spectra were obtained on a
commercial MALDI-FTICR instrument (Ion Spec, Irvine, CA).
The Na' concentration was enriched to produce primarily
singly charged, sodiated species. Two types of fragmentation
were used: IRMPD and SORI-CID MS". Both of these “slow-
heating” methods add energy more gradually than the CID
methods used with MALDI-TOF instruments, and hence
almost exclusively access low-energy fragmentation path-
ways.>1920 JRMPD produces individual spectra containing es-
sentially the same peaks as a sequence of MS"” SORI-CID
spectra, but with the advantages of faster duty cycles and less
ion loss due to scattering.!® Although CartoonistTwo has been
run on both individual IRMPD spectra and sequences of MS"
SORI—CID data, the test set contained only sequences of SORI—
CID spectra, as structures for these spectra were better
validated. The test set is available by request from the authors.
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2.2. Software. CartoonistTwo is a Unix shell script that
invokes a series of three programs written in C. The first
program processes the spectra by picking peaks that are likely
to represent glycans and then assigning confidence values to
these peaks. The second program is an enhanced version of
the original Cartoonist program,?! designed for single-MS
MALDI-TOF spectra, which assigns possible glycan composi-
tions to the peaks (specifying the identities of monosaccharides
but not their connectivity) and recalibrates m/z measurements
based on these tentative assignments. The third program in
the series does the actual identification: it generates all
plausible candidate topologies and scores them.

2.3. Algorithms. 2.3.1. Finding Significant Peaks. The first
program in the series relies on statistical modeling of noise
peaks. At first glance, FTMS spectra appear much noisier than
spectra from lesser instruments, as seen in Figure 2. Impulse
noise in the (cyclotron) frequency domain produces a lush lawn
of noise peaks in the m/z domain. Previous papers have
employed heuristics to select peaks, for example, selecting all
peaks of intensity at least 5 times the baseline noise level,?
which can be set using a histogram of peak intensities.?® Here,
we give a more principled method, which uses a peak histo-
gram to compute a p value, the chance that a given peak would
arise from noise alone.

The instrument software delivers a spectrum with 5000—
30 000 picked peaks (local maxima), only a minuscule fraction
of which are indeed signal (peaks representing glycan frag-
ments). Our preprocessing software computes a peak histogram
as shown in Figure 4 and then plots about 15 points (x, y),
where x is the center intensity of a histogram bin and y is the
logarithm of the number of peaks within that bin. Figure 4
shows linear and quadratic fits to these points. The quadratic
fit is better, which is not surprising, as we might expect the
intensity distribution to fall off as a normal distribution, that
is, as exp(—x?). Once we have fit the log frequency to a
quadratic, —ap — a1 x — a» x* then we can compute the
probability that a noise peak has intensity at least o by

0 a
pla) = [t gy — L e*w“f"*aZerfc((OL i Tc;z)x/“_z)

a,

If there are N peaks in the spectrum, then we would expect to
see at least one noise peak of intensity greater than o with prob-
ability of 1 — (1 — p(@))", and hence we can set the significance
of a peak of intensity o to be (1 — p(a))". To handle variation
in noise with m/z, we divide the spectrum into overlapping
segments containing N/4 peaks and perform the analysis on
each segment separately. The significance for a given peak is
set by the segment for which it is closest to the center.

2.3.2. Recalibration. FTMS offers the most accurate mass
measurement of any currently available instrument technology,
yet the measurements can be greatly improved by recalibration
using either internal chemical calibrants®* or correlation of
different charge states of the same species.?® Here, we describe
precise recalibration based on tentative peak assignments. This
recalibration method has been used already in the scoring
phase of de novo peptide sequencing,?® but with glycans, it can
even be used in the preprocessing phase, because it is possible
to make tentative peak assignments (at the level of monosac-
charide composition) without reference to a candidate parent
molecule. As reported previously, Cartoonist’! uses this method
for analysis of single-MS MALDI-TOF glycan spectra. Here,
we show how to extend the technique to fragmentation spectra
and FTMS.
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Figure 2. IRMPD FTMS spectrum of an O-glycan. A single IRMPD fragmentation spectrum generally contains all the fragments in a
sequence of CID MS” spectra. Regardless of the type of fragmentation, FTMS spectra have a great many noise peaks, and it is crucial
to distinguish small signal peaks from noise. The small peak at 429.2 is two HexNAc's (mass 203.1, not derivatized to alditol) and
sodium (mass 23.0). This peak, which would be overlooked by previous thresholding methods, distinguishes the correct topology (on

the left in Figure 3) from the other topology.
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Figure 3. Two candidate topologies (cartoons) for the spectrum
shown in Figure 2. Both candidates explain almost all of the large
peaks in the spectrum, but the structure on the right cannot
explain the peak at m/z 429.2 corresponding to two HexNAc's
without alditol.

O Aditol form

In the tentative-peak recalibration method, peaks with
sufficiently high p values are matched to oligosaccharide
masses (including oligosaccharides with single water losses).
As mentioned above, oligosaccharide masses are much sparser
than peptide masses, so almost all significant peaks will match
at most one theoretical mass. A robust statistical regression
method is then used to compute a correction curve mapping
measured masses to theoretical masses. It is important to use
robust regression because tentative peak assignments are often
wrong. CartoonistTwo uses least-median-of-squares regres-
sion?”?8 for outlier rejection, followed by least-squares regres-
sion with a quadratic regressor, as shown in Figure 5. We find
it interesting that a quadratic regression model greatly outper-
forms a linear model, which we previously found to be very
accurate for time-of-flight (TOF) spectra.??6 The difference may
be due to a new source of error, such as space-charge effects
in FTMS,?5 or to less exact initial calibration.

After recalibration, we obtain measurement errors in the
range 0.003—0.005 Da (average absolute value of residuals in

each spectrum), which translates to 4—7 ppm. These numbers
are comparable with those from other recalibration meth-
ods;?+?5 for example, Bruce et al. report errors of 3.6, 7.0, and
5.4 ppm on three spectra using their DeCAL algorithm.
Comparing DeCAL with the tentative-peak algorithm, we
observe that DeCAL has the advantage that it does not require
any knowledge of the chemical species in the spectrum, but
the disadvantage that it requires species in multiple charge
states (which we do not have here).

2.3.3. Peak Confidence. CartoonistTwo models recalibrated
mass errors as arising from a normal distribution; it gives each
peak a confidence value by multiplying the probability density
at the peak’s mass error by the peak’s significance. (The
implementation actually adds the logarithms of the prob-
abilities.) Assuming that mass errors and intensities are
independent—actually more intense peaks tend to be more
accurate—the confidence value gives the probability that the
peak indeed represents a glycan fragment. The high mass
accuracy of recalibrated FTMS is not usually needed to identify
high-intensity glycan peaks, but mass error plays a larger role
in determining the overall confidence value for less-intense
peaks. It is not uncommon for a spectrum to have a low
intensity peak where intensity alone gives a high confidence
score and it has mass close to that of a potential glycan, but it
has an unreasonably high mass error (after recalibration) so
that the total confidence is low. The total confidence prob-
abilities tend to cluster near 100% or 0%. There will typically
be 15—60 peaks whose confidence is great than 10%, only 1—2
peaks with confidence probabilities in a range of 10% to 0.1%,
and all the rest have scores of less than 0.01%.

CartoonistTwo processes a sequence of MS” spectra by
setting peak significances and recalibrating mass measurements
for each spectrum individually, and then taking the union of
all the significant peaks observed in all the spectra. A peak
observed more than once is given its maximum confidence
value. By lumping together all the peaks from the MS”
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Figure 4. (a) CartoonistTwo first computes a histogram of peak intensities. (b) CartoonistTwo then graphs (x, y) pairs for the right tail
of the intensity distribution, where x is the intensity and y is the log of the number of peaks. A fitted curve is used to judge the
significance of peak intensities. This method reliably finds small but significant peaks such as the one shown in Figure 2.
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Figure 5. Quadratic regressor is used to recalibrate the mj/z
measurements, reducing the average error in each spectrum to
0.003—-0.005 Da.

Table 1. Performance of Different Scoring Algorithms against
Hand Annotated Spectra?

correct tie second miss performance
Basic Scorer 77 2727 2(0) 3(0) 0.449 (0.502)
Basic + Shedding 9(9 25(24) 2(1) 3(0) 0.460 (0.514)
Basic + Barking 19(19) 3@ 9(8) 8(4) 0.643 (0.716)
Shedding + Barking 20 (20) 3(3) 9(8) 7(3) 0.657 (0.730)
Shedding + Barking 20 (20) 3 (3) 9(8) 7(3) 0.658(0.732)

(Multiple)

@ Results of the five algorithms on the 39 test spectra. In parentheses are
the results excluding the 5 arguable spectra. “Correct” means that the single
top-scoring candidate is correct. “Tie” means the correct structure is tied
with at least one other topology, “Second” means that the correct structure
has the second highest score (possibly tied) and “Miss” means that it was in
third or lower position. “Performance” gives a unified accuracy measurement
u, where 1/u is the expected rank of the correct structure, assuming that
topologies with equal scores appear in random order.

sequence, we lose some information—the intensities of the
peaks in the individual spectra—but enable the use of the same
identification methods for CID MS” and IRMPD spectra.
2.3.4. Candidate Generation. The third program in the series
determines the monosaccharide composition of the parent ion,
and then generates and scores topologies. Because most
O-glycans are made up of only a few different monosaccharides
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Figure 6. Two glycans may be isospectral, meaning that they
have exactly the same set of fragments (although not necessarily
with the same multiplicity).

each with a significantly different mass, the monosaccharide
composition is usually uniquely determined from the parent-
ion mass, and hence sophisticated algorithms such as those
devised for peptides® are not needed. The generation step next
considers all possible topologies for the set of monosaccha-
rides, subject to a few biological restrictions on the amount of
branching. Specifically the reducing sugar is connected to one
or two linear chains of hexoses and HexNAc’s and any further
branching consists only of fucose sugars. These restrictions
limit the number of possible topologies to manageable num-
bers (less than 10 000) for the spectra used here. Although this
includes all the hand annotations for our test spectra, non-
conforming topologies are listed in CarbBank,!® and so different
rules might be more appropriate for other applications.

2.3.5. Scoring. A basic scorer, as used by STAT!® and
GLYCH,'” simply counts the number of spectral peaks (above
some threshold intensity) explained by fragments of the
candidate (within some mass tolerance). We started with a
similarly basic scorer, only rather than using simply zero or
one, we used our peak confidences, thereby incorporating both
mass error and intensity significance. A peak that is explained
twice (that is, by two fragments) scored the same amount as a
peak that is explained once. We evaluated this scorer, called
Basic in Table 1, along with four successively more advanced
scorers.

Basic + Shedding incorporates the shedding model of glycan
fragmentation, as shown in Figure 1. This scorer is the same
as Basic, but it adds a small constant bonus for each observed
fragment with a path of observed peaks to the root of the
shedding tree. (The same topology can appear at multiple
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Figure 7. Test set of 39 O-glycans. “First place” means that the correct answer was CartoonistTwo's unique top scorer; “Tied for first
place” means that the correct answer tied for first with at least one other topology; “Second place” means the correct answer tied for

second; and “Miss” is everything else.

nodes of the shedding tree, and a fragment receives the bonus
if any of its occurrences has a path to the root.) Basic + Barking
improves the basic scorer in a different way, by penalizing for
fragments of the candidate that were not observed—*“the dog
that did not bark”. The penalty was set to a small constant times
the number of unobserved fragments. We set the constant very
small, so that the unobserved peaks would be used only to
break ties between topologies that explained equal numbers
of peaks. The question of multiple counting again arises:
should a missing peak that corresponds to two different
subgraphs of the topology be penalized twice? Basic + Barking
penalized such a missing peak only once. Shedding + Barking
includes both improvements to the basic scorer. Finally,
Shedding + Barking (Multiple) is the same as Shedding +
Barking, but penalizes each missing peak in proportion to the
number of subgraphs of that mass that are unobserved.

Results and Discussion

For the experimental evaluation of the five scoring functions,
we used 39 sequences of SORI—-CID MS” spectra with known
answers. Each sequence included one to five mass spectra, with
selection and fragmentation carried out on the dominant peak
in the previous spectrum. The known answers were determined
by repeated MS experiments and exhaustive manual analysis,
and in some cases further validated by Nuclear Magnetic
Resonance (NMR).!® We did not use the newer IRMPD spectra
in the test set, as these structures are not yet as well validated.

Results are shown in Table 1 and Figure 7. CartoonistTwo
(all five scorers) gave low scores to the “known answers” on 5
sequences of spectra, and further examination of the data led
us to believe that these manually determined structures were

probably wrong. Table 1 lists results for both the original set
of 39 sequences and the better-validated set of 34. An important
issue in evaluating a glycan scorer is specificity: should we
prefer a scorer that often gives the correct topology the top
score, but tied with many other top scorers, over a scorer that
gives the correct topology the top score less often, but produces
fewer ties? We devised a unified performance metric to address
this question. If there are no ties, then we assign performance
of u = 1/r where r is the rank the scorer assigns to the correct
topology. So 1.0 means perfect performance, and numbers near
zero mean poor performance. If there are ties, then we assume
the tied structures appear in random order, and we set u =
1/r, where r is the expected rank of the correct structure over
all possible random orders. Using this metric, we can see that
each of the refinements to the basic scorer adds some accuracy.
The addition of penalties for predicted peaks not observed
(Barking) is the largest single improvement, and the improve-
ment offered by the shedding model is small but probably real,
as it improved both Basic and Basic + Barking.

Peptide identification algorithms can exploit large databases
of spectra and use statistical patterns of fragmentation.3*3!
Since such large databases are not available for glycans, we
have followed the more empirical approach of creating reason-
able scoring functions and then comparing their performance
on a set of test spectra. For example, we make the plausible
assumption that every glycosidic bond is equally likely to
fragment, and assign an identical small penalty to each missing
fragment. As large test sets of spectra become available, we can
replace such assumptions with more statistically founded ones.

The final scorer gave a unique top scorer that matched the
known answer on 59% of the 34 spectra, about three times as
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often as the basic scoring function used up until now. The true
performance of the final scorer may actually be somewhat
higher, as CartoonistTwo has several times caught errors in
manual expert annotation on IRMPD spectra (not included in
the test set), and it is possible that the curated test set of 34
structures may still include small errors. In several spectra, the
correct structure was distinguished from other structures only
by the presence or absence of a single small peak, such as the
peak at 429.2 in Figure 2.

Cleavage can occur at any glycosidic bond in the molecule,
and once one cleavage has occurred, the molecule can continue
to fragment to produce additional, smaller oligosaccharides.
Thus, in the MS” spectra, the higher-mass fragments tend to
appear in the first fragmentation, or MS? spectrum, and most
lower-mass fragments do not appear until later rounds of
fragmentation and mass measurement (MS® and MS*) as
observed previously.>!® Fucoses tend to be lost first,?’ and many
of the later-round fragments are neither b- nor y-ions as they
show multiple losses of leaf monosaccharides. The shedding
model hypothesizes that under slow-heating each successive
oligosaccharide “sheds” only a single monosaccharide. In terms
of the tree in Figure 1, shedding gives a set of oligosaccharides,
with each structure having a complete path to the root. The
same pattern of connected fragments can also result from a
less sequential shedding model, in which an oligosaccharide
can lose a two- or three-saccharide component, but enough
of the parent ion remains to fill in the gaps in the path. The
results support (at least the weaker version of) the shedding
model, with 25 of the 39 sequences conforming perfectly,
meaning that all the observed fragments had complete paths
to the root of shedding tree. In 10 of the remaining 14
sequences, there was only a single discrepancy, that is, only a
single observed fragment without a complete path to the root.
The most common discrepancy between the shedding model
and the observed data was the loss of two fucoses “simulta-
neously”. Although the shedding model is supported by the
data, the incorporation into the scorer of a bonus for complete
paths to the root did not greatly improve performance, because
competing topologies often obtained the same number of
complete-path bonuses.

In the context of scoring algorithms, it is worth pointing out
that the presence/absence of fragmentation peaks is insufficient
to determine the topology of glycans. Figure 6 shows a pair of
“isospectral” glycans, that is, distinct topologies with exactly
the same set of fragment compositions.

Conclusions

Algorithms have been previously described for the identifica-
tion of detached glycans from fragmentation spectra, but their
usefulness is limited because they typically produce a large
number of equally plausible structures.!® CartoonistTwo ad-
dresses this problem by introducing a more sophisticated
scoring function that makes finer discriminations between
structures. Our experiments show that scorers that take into
account fragments that do not appear in the spectrum offer a
substantial improvement over simpler scoring functions. To use
this improvement, however, it is crucial that the processing
pipeline accurately distinguish low-intensity signal peaks from
background noise. With its use of a noise model and m/z
recalibration, CartoonistTwo can effectively cull the list of
possible structures.

We have presented results only for O-glycans, but we could
easily adapt CartoonistTwo to handle N-glycans or free oli-
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gosaccharides, with changes necessary only in the candidate
generation step. In fact O-glycans are more difficult than the
more well-studied N-glycans, because they have fewer known
biological constraints. The current version of CartoonistTwo
determines only the topology of an O-glycan, but it has been
shown that differing linkages can produce characteristic frag-
mentation patterns,'® even in the absence of cross-ring frag-
mentation, so in future work we plan to explore the possibility
of computing linkage information as well.
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