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ABSTRACT

Infant fecal samples are commonly studied to investigate the impacts of breastfeeding
on the development of the microbiota and subsequent health effects. Comparisons of
infants living in different geographic regions and environmental contexts are needed
to aid our understanding of evolutionarily-selected milk adaptations. However, the
preservation of fecal samples from individuals in remote locales until they can be
processed can be a challenge. Freeze-drying (lyophilization) offers a cost-effective
way to preserve some biological samples for transport and analysis at a later date.
Currently, it is unknown what, if any, biases are introduced into various analyses

by the freeze-drying process. Here, we investigated how freeze-drying affected
analysis of two relevant and intertwined aspects of infant fecal samples, marker gene
amplicon sequencing of the bacterial community and the fecal oligosaccharide profile
(undigested human milk oligosaccharides). No differences were discovered between
the fecal oligosaccharide profiles of wet and freeze-dried samples. The marker gene
sequencing data showed an increase in proportional representation of Bacteriodes
and a decrease in detection of bifidobacteria and members of class Bacilli after freeze-
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microbial ecosystem (Biasucci et al., 2008), and is likely a critical ecological window that
influences health trajectory throughout life (Blaser ¢ Falkow, 2009; Dominguez-bello et al.,
2011; Scholtens et al., 2012; Cho et al., 2012). Infant fecal samples are commonly studied
to investigate the impacts of factors such as breastfeeding on the development of the

gut microbiota and subsequent health effects. As some of the effects of breastfeeding on
the microbiota are mediated by selective microbial consumption of the oligosaccharides
found in mother’s milk, the milk-derived fecal oligosaccharide profile is of scientific and
practical interest (Lewis et al., 2015). Human milk oligosaccharides have also been shown
to have antiadhesive properties, to modulate immune cell responses, and are of increasing
interest as therapeutic agents in the diet (Bode, 2012; Smilowitz et al., 2014).

Comparisons of published data sets from infants around the world show differences
between the gut microbiomes of infants from different countries (Jost et al., 2012; Yat-
sunenko et al., 2012; Avershina et al., 2013; Roos et al., 2013; Azad et al., 2013; Abrahamsson
et al., 2013; Huda et al., 2014; Lewis et al., 2015). The study of infants living in disparate
environmental contexts will be necessary to our understanding of evolutionarily-selected
milk adaptations. However, the preservation of fecal samples from infants in remote
locations until lab processing can be a challenge given the limitations of the infrastructure
in many potentially interesting locations. Freeze-drying (also known as lyophilization)
is a common method of preserving material by removing water in a low-pressure, low
temperature environment whereby water directly sublimates. It is an important technique
in a variety of different industries (i.e., pharmaceutical and food), and is useful in some
scientific fields for biological sample preservation in remote areas where appropriate
refrigeration prior to lab analysis is impossible or cost prohibitive. Freeze-drying stabilizes
samples and reduces the weight, reducing the risk and cost of shipping samples over
large time periods and/or distances. Freeze-drying infant fecal samples may open up
new geographic areas for investigation and improve the data from existing field studies.
However before researchers can use freeze-dried samples to study microbial communities,
their determinants (e.g., human milk oligosaccharides), and their downstream byproducts
the effects of lyophilization on these factors must first be understood.

The impact of freeze-drying on the extraction of oligosaccharides from samples is
unknown. Several methods have been developed for oligosaccharide extraction for both
wet and freeze-dried fecal samples, using analytical techniques such as high-performance
anion-exchange chromatography, colorimetric methods, and gas chromatography/mass
spectrometry (Sabharwal et al., 1984; Sabharwal, Sjoblad & Lundblad, 1991; Moro et al.,
2005). These methods have been successful in extracting oligosaccharides from wet and
lyophilized feces, but to our knowledge there has not been a study showing whether
freeze-drying fecal samples affects the integrity of the sample and analyses.

Conversely, DNA-based studies are obvious candidates for the use of freeze-drying
on field samples, as DNA has been shown to be relatively stable in a variety of freeze-
dried preparations (Gianaroli et al., 2012; Van der Heijden, Beijnen & Nuijen, 2013).
Studies on macro-organisms have yielded a spectrum of conclusions on freeze-drying
field samples for DNA extraction and further study ranging from mixed to positive
(Wasser et al., 1997; Straube & Juen, 2013). The few studies available on microorganisms,
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however, have shown advantages to using freeze-dried samples which may include better
DNA vyield from extraction, at least from fecal samples (Ruiz ¢ Rubio, 2009; Rapp et

al., 2010). Freeze-drying may protect microbial DNA in fecal samples from hydrolytic
damage and enzymatic degradation (Machiels et al., 2000). The effects of freeze drying
on measures of microbial ecology, however, are poorly understood, especially in relation
to current marker-gene amplicon sequencing methods. Numerous studies have shown
that factors ranging from primer choice, DNA extraction method, sample preservation
method, and kit contamination influence the output of marker gene sequencing-

based microbial ecology studies to various degrees (Maukonen, Simaes ¢ Saarela, 2012;
Ghyselinck et al., 2013; Dominianni et al., 2014; Wesolowska-Andersen et al., 2014; Weiss et
al., 2014; Mennerat ¢ Sheldon, 2014; Rubin et al., 2014; Albertsen et al., 2015; Voigt et al.,
2015; Wagner-Mackenzie, Waite ¢ Taylor, 2015; Walker et al., 2015). If freeze drying has
differential effects on the DNA extraction efficiency of different types of bacteria (due to
cell wall composition, the presence of an exopolysaccharide capsule, biofilm formation,
sporulation, or any other reason), it would bias the relative abundance data output of
DNA-based studies. Here we investigated these potential confounding factors on fecal
oligosaccharide and microbiota analysis using a test set of infant fecal samples.

MATERIALS AND METHODS

Sample collection
Infant stool samples

Twenty-four prospective mothers were enrolled in the Foods for Health Institute
Lactation Study at UC Davis at approximately 34 weeks of gestation and asked to fill out
detailed questionnaires which included information about their infant’s diet throughout
the study. Infant fecal samples were collected at 340—400 days of life from twenty-four
breast-fed term infants born to women in the study. Parents transferred their infant
fecal samples into sterile plastic tubes and were instructed to immediately store the
samples in —20 °C until transported by study personnel. Fecal samples were transported
to the laboratory on ice packs and stored at —80 °C before processing. The UC Davis
Institutional Review Board approved all aspects of the study (approval #216198) and
written informed consent was obtained from all subjects. This trial was registered on
clinicaltrials.gov (Clinical Trials.gov Identifier: NCT01817127).

Freeze drying and DNA extraction

Each fecal sample was split into two analysis streams. A portion of each sample
(approximately 1.5 g) was taken and freeze-dried using a Labconco FreeZone 4.5 freeze-dry
system until dry. Each sample was weighed before and after freeze-drying, and the percent
mass loss was calculated for each sample. Each freeze-dried sample was sub-divided into
two arms for DNA extraction, one in which the amount of mass loss incurred during
freeze drying was accounted for before DNA extraction (“Low mass”), and one in which
the DNA extraction kit (ZR Fecal DNA MiniPrep Kit; Zymo Research, Irvine, CA, USA)
manufacturer’s instructions (150 mg of sample) were followed without accounting for the
effects of freeze drying (“High mass”). These two conditions (High and Low mass), along
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with a non-lyophilized aliquot from each fecal sample were used for DNA extraction. This
included a bead-beating step using a FastPrep-24 Instrument (MP Biomedicals, Santa Ana,
CA, USA) for 2 min at 25 °C at a speed of 6.5 m/s. In a few cases, the default amount of lysis
solution (750 1) was insufficient to reconstitute the freeze-dried samples, and the addition
of more (up to the capacity of the tube) was necessary to fully rehydrate the samples. One
sample (#16) did not have sufficient feces to perform all the analysis, and therefore no
“Low mass” condition was tested. All DNA extractions were performed in duplicate.

Sequencing and analysis
lllumina sequencing—V4 region

Duplicate DNA extractions for each of the 24 samples under each condition (High mass,
Low mass, and Wet) were prepared for marker gene sequencing as previously described
(Caporaso et al., 2011) with the following modifications. Universal barcoded primers with
[llumina sequencing adapters (adapters are italicized and an example barcode is highlighted
in bold) V4F (5-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATCTACTGCTGAGTGTGCCAGCMGCCGCGGTAA-3") and
V4Rev (5'-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCT
GAACCGCTCTTCCGATCT CCGGACTACHVGGGTWTCTAAT-3") were used to PCR
amplify the V4 region of the 16S rRNA gene (Caporaso et al., 2011). PCR reactions
contained 7.5 pl 2x GoTaq Green Master Mix (Promega, Madison, WI, USA), 0.6 1l
25 mM MgCl,, 3.6 ul water, 1.5 pl forward and 0.3 pl reverse primers (0.2 uM final
concentration), and 1.5 pl DNA. A negative control was also included into which water
was added in the place of DNA. A portion of each reaction was electrophoresed in a 0.8%
agarose gel and stained with GelGreen (Phenix, Candler, NC, USA). The DNA band
for each sample was visually categorized by brightness and size for quality control. All
samples were pooled (5 ul of each reaction for samples with bright bands, 10 pl for
faint samples with bands, and 12 pl for samples with non visible bands) and purified
with the QTAquick PCR Purification Kit (QIAGEN, Valencia, CA, USA) according to
the manufacturer’s instructions. The pooled, purified amplicons were sequenced at the
University of California-Davis DNA Technologies Core Facility on an Illumina MiSeq
sequencing platform.

Sequence analysis

[llumina V4 16S rRNA gene sequences were demultiplexed and quality filtered using the
QIIME 1.8 software package with default settings unless otherwise specified (Caporaso et
al., 2010a). Reads were truncated after a maximum number of 3 consecutive low quality
scores. The minimum number of consecutive high quality base calls to include a read (per
single end read) as a fraction of the input read length was 0.75. The minimum acceptable
Phred quality score was set at 20. Similar sequences were clustered into operational
taxonomic units (OTUs) using open reference OTU picking with UCLUST software
(Edgar, 2010). Taxonomy was assigned to each OTU with the Ribosomal Database Project
(RDP) classifier (Wang et al., 2007) and the RDP taxonomic nomenclature (Cole et al.,
2009). OTU representatives were aligned against the Greengenes core set (DeSantis et al.,
2006) with PyNAST software (Caporaso et al., 2010b). PCoA (Principle Coordinate
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Analysis) plots were generated using the default beta diversity analysis parameters based
off of a weighted UniFrac distance matrix (Lozupone ¢ Knight, 2005). The sequencing data
is available in the European Nucleotide Archive under study number ERP012928.

Oligosaccharide analysis

Oligosaccharide extraction

Free oligosaccharides were extracted from aliquots of both the freeze-dried and non-
lyophilized samples from 23 of the infants (sample for infant 18 did not have enough feces
for both analyses) following previously reported methods for human milk oligosaccharide
extraction from breast milk, with extra initial homogenization and solid phase extraction
steps (Ninonuevo et al., 2006; Wu et al., 2010; Wu et al., 2011). A total of 20 mg of each of
the samples were diluted with 200 wL water and shaken overnight. After centrifugation,
25 pL of supernatant was aliquotted onto a 96-well plate, followed by protein removal via
ethanol precipitation. The resulting glycans were reduced with 1.0 M NaBH, at 65 °C in an
incubator for 1.5 h. After reduction the samples were cleaned on solid phase extraction C8
cartridges, in which the eluent was collected along with a water wash. The flow-through was
then purified on graphitized carbon cartridges by desalting with deionized water and eluted
first with 20% acetonitrile in water, then 40% acetonitrile in 0.05% trifluoroacetic acid
(v/v). The eluent fractions were collected in the same wells and the solvent was evaporated.
The samples were reconstituted and diluted to an appropriate concentration for analysis.

Oligosaccharide analysis
The extracted oligosaccharides were analyzed on a nano-high performance liquid
chromatography (HPLC)-Chip/time-of-flight (TOF) mass spectrometry system. The
Agilent 1200 series HPLC system uses a capillary pump for sample loading and a nano
pump for separation, all done on a microfluidic chip. The chip has a 40 nL enrichment
column and a 75 pL x 43 mm analytical column packed with porous graphitized carbon.
The samples are loaded by the capillary pump at a rate of 4.0 pL/min and a 2 pL injection
volume onto the enrichment column. Chromatographic separation is accomplished with
a binary gradient of aqueous solvent (3% acetonitrile:water (v/v) in 0.1% formic acid) and
organic solvent (90% acetonitrile:water (v/v) in 0.1% formic acid). This system is coupled
to an Agilent 6220 series TOF mass spectrometer via chip-cube interface. The instrument
was calibrated by a dual nebulizer electrospray source with internal calibrant ions ranging
from m/z 118.086 to 2721.895. Data was collected in the positive mode following the
method developed and optimized for oligosaccharide separation by Wu ef al. (2010) and
Wu et al. (2011).

Data was collected and processed using Agilent MassHunter Qualitative Analysis
software, version B.03.01. Oligosaccharide compounds were identified with the Find
by Molecular Feature function with a 20 ppm mass error parameter when compared to
theoretically calculated masses based on previously developed libraries and possible protein-
linked glycans (Wu et al., 2010; Wu et al., 2011; Nwosu et al., 2012). The oligosaccharides
were divided into four glycan classes: fucosylated (any structure with fucose), sialylated
(any structure with sialic acid), fucosylated and sialylated, and non-fucosylated neutral.
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Sample (wet duplicates, freeze-dried low mass duplicates, then freeze-dried high mass duplicates)

m g_Bifidobacterium
g__ Prevotella
M g__Akkermansia
1f__Lachnospiraceae;g__Coprococcus
mf__Lachnospiraceae;g__ Epulopiscium
wf__Clostridiaceae;Other
f__Ruminococcaceae;g__

g__ Bacteroides
B f__Enterobacteriaceae;g__
M g_ Faecalibacterium
w f__Lachnospiraceae;g__Blautia
mf__Lachnospiraceae;g_
wo__Clostridiales;f__;g__
mf__Veillonellaceae;g__Megasphaera

o__Bacteroidales;f__Rikenellaceae;g__
W g_ Lactobacillus
B f__Erysipelotrichaceae;g__
mf__Lachnospiraceae;g__Dorea
mf__Lachnospiraceae;Other
f__Clostridiaceae;g__
mf__Veillonellaceae;g__Megamonas

1 g__Parabacteroides

W g_ Streptococcus

B f__lachnospiraceae;g__Roseburia

m f__Lachnospiraceae;g__[Ruminococcus]
f__Clostridiaceae;g__SMB53
g__Ruminococcus

W Other

Figure 1 Bacterial communities of freeze-dried and wet feces. The bacterial community structures of the feces of 24 test infants. Relative abun-
dances of each bacterial taxon are shown. Each sample is grouped together, with the two wet replicates first, followed by the two low-mass dupli-
cates, and lastly the high-mass duplicates.

Relative class abundance was calculated by dividing each class abundance by the total
oligosaccharide amount for each infant. Paired ¢-tests were used to determine if there were
differences between glycan content of freeze-dried and wet feces.

RESULTS

Sample processing and summary description

After freeze-drying, the 24 fecal samples weighed on average approximately 25% of their
pre-lyophilization weight, with a range of 14-32% (Table S1). Sequencing of the 16S
ribosomal marker gene showed that the average fecal microbiota of these subjects was
dominated by Bifidobacterium, followed in abundance by Bacteroides, and then by various
members of the family Lachnospiraceae (Fig. 1). The average total fecal oligosaccharide
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level was 4.5 x 10° ion counts (for an injection concentration of 1 mg/100 wL). The average
relative abundance of fecal oligosaccharides types were 20.9% fucosylated (no sialic acid),
4.1% sialylated (no fucose), 2.9% fucosylated and sialylated, and 72.0% non-fucosylated
neutral. These relative abundances for each glycan class are similar to previous results,
with slightly lower relative sialylation and higher non-fucosylated neutrals (De Leoz et al.,
2013).

Freeze-drying effect on oligosaccharide profile

To test whether or not freeze-drying feces affects the oligosaccharide extraction and
analysis, student’s ¢-tests were used to compare the extracted glycans. The absolute
and relative abundances were compared between the two groups. Freeze-drying had
no effect on the analysis of oligosaccharides, for both absolute and relative measures
of oligosaccharides (Fig. 2). There was no significant difference in total (p = 0.4574),
fucosylated and sialylated (p = 0.2552), fucosylated (p = 0.6084), sialylated (p =0.2153),
or non-fucosylated neutral oligosaccharides (p = 0.4985). There was also no significant
difference for relative abundances between the two groups.

Freeze-drying treatment effect on microbiome

To test whether freeze-drying had any effect on measures of the fecal microbial community,
the sequencing data was analyzed using Linear Discriminant Analysis Effect Size (LefSe)
with default settings (unless otherwise noted) (Segata et al., 2011). Figure 3A shows the
differential features of wet and dry (both high- and low-mass) replicates in an all-against-all
comparison (classes = wet and dry, subclasses = wet, high, and low). The largest bacterial
groups different between the two treatments were the class Bacilli, phylum Actinobacteria
(higher in wet feces), and the phylum Bacteroides (higher in dried feces). Figure 3B shows
the results separated by high-mass and low-mass as well (classes = wet, high, and low) in a
one-against-all comparison, which produced a similar result. LefSe found no discriminative
features in an all-against-all comparison between high-mass, low-mass, and wet classes,
suggesting that high- and low-mass replicates were not significantly different. Figure S1
gives the Linear Discriminate Analysis scores for the differences listed in Fig. 3 (cutoff at
2.0).

To test the overall similarity of measures of the microbial communities from freeze-dried
and wet feces, a weighted UniFrac distance matrix was calculated for all samples and tested
statistically using the ANOSIM (Analysis Of Similarity) algorithm (Clarke, 1993; Lozupone
& Knight, 2005; Fierer et al., 2010) implemented within QIIME. Three different groupings
were tested: (1) wet vs. dry (both types), (2) wet vs. high mass lyophilized vs. low mass
lyophilized, and (3) grouping by infant (test subject) shown in Table 1. There was no
statistical support for grouping by wet vs. dry (R statistic = 0.008, p-value = 0.358),
which suggests that lyophilization is not driving differences in the samples. Wet vs. high
mass vs. low mass grouping had a significant p-value of 0.005, however the R statistic was
very low (0.035), indicating the magnitude of the influence, though reproducible, was
small. As expected, microbiota grouping by infant (subject) was significant and robust
(p=0.001,R=10.838). Figure 4 shows PCoA plots colored by each of the tested groupings,
for visualization of the grouping.
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Figure 2 Comparison of fecal oligosaccharide measures between freeze-dried and wet fecal samples.
Absolute and relative abundances of fecal oligosaccharides.

Table 1 Analysis Of Similarity (ANOSIM) analysis by various groupings. P values represent statistical
significance, R statistics show effect size.

Classes Method name R statistic p-value Number of
permutations

Wet vs. Dry ANOSIM 0.008 0.358 999

Wet vs. High vs. Low ANOSIM 0.0351 0.005 999

Infant (subject) ANOSIM 0.8386 0.001 999

Lewis et al. (2016), PeerJ, DOI 10.7717/peerj.1612 8/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.1612

Peer

A terlda  p Actinomyces
cyanobac Ty g_
B Dry ey & e""detes f__Actinomycetaceae
Bl Wet o__Actinomycetales

a:

b:

c:

d: g__Bifidobacterium
e: f_Bifidobacteriaceae
f: o__ Bifidobacteriales
9: g__Eggerthella

h: g__Bacteroides

i: f__Bacteroidaceae

j: g__Odoribacter

k: f__Odoribacteraceae
I: g__Parabacteroides
m: f__Porphyromonadaceae
n: g__ Prevotella

o: f__Prevotellaceae

p: f__Rikenellaceae

al a5

a:g_

rf_S247

s: o__Bacteroidales
t

u:

f__Gemellaceae
v: o__Gemellales
w: Other
x: Other
y: g__Streptococcus
z: f__Streptococcaceae
a0: o__Lactobacillales
al: g_SMBS53
a2: g__Coprococcus
a3:g__
a4: g__Oscillospira
a5: f__Ruminococcaceae
a6: g__Veillonella
a7: f_Veillonellaceae
a8: g__Pseudomonas
a9: f__Pseudomonadaceae
b0: o Pseudomonadales

a: g__Actinomyces

b: f_Actinomycetaceae

c: f__Micrococcaceae

d: o__Actinomycetales

e: g__Eggerthella
f: g__ Bacteroides
g: f__Bacteroidaceae

h: g_ Odoribacter
i f_Odoribacteraceae

j: g__Parabacteroides

k: f__Porphyromonadaceae
I: o__Bacteroidales
m:ig_

n:f_
0: o__Streptophyta

prg_

q:

r

St

f__Gemellaceae

o__Gemellales
Other

I t: Other

Wl u: g_ Streptococcus

B a0: g__Veillonella

@ al: f_Veillonellaceae
N a2:g_

B a3: f_mitochondria

Il a4: g__Mannheimia

B a5: g_ Pseudomonas
W 26: f__Pseudomonadaceae
Bl a7: o__Pseudomonadales

Figure 3 Cladograms representing the taxa enriched under various treatments. (A) shows the differen-
tial features of wet and dry (both high- and low-mass) replicates in an all-against-all comparison (classes
= wet and dry; subclasses = wet, high, and low). (B) shows the results separated by high-mass and low-
mass as well (classes = wet, high, and low) in a one-against-all comparison.
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(subject).
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DISCUSSION

Research on the dramatic changes that occur in the gastrointestinal tract of neonates

is increasing and the influence of diet (breast milk, formula and weaning foods) on the
gastrointestinal tract (GIT) microbiota and its function are a particular focus (Zivkovic et al.,
2013). We have previously noted correlations between the milk oligosaccharide content of
the nursing mother and infant fecal microbiota composition (Lewis et al., 2015). Additional
research has identified intriguing correlations between the milk oligosaccharide content
remaining in the neonate feces and the fecal microbiota composition (De Leoz et al. (2014);
Wang et al. (2015)) clearly suggesting specific primary consumers (i.e., bifidobacteria)
among the early colonizers of the infant GIT. However more studies comparing fecal
glycome and microbiome are needed, particular in infants at risk for malnutrition
(Subramanian et al., 2015) in developing countries.

Lyophilization is a common preservation and mass-reduction method for fecal samples
obtained from remote field sites or stored at local collection points without the need
for a cold chain transportation or consistent electrical power to on-site freezers. The
use of this method could expand and diversify the set of possible sampling locations,
however, the effects of freeze-drying on measures of microbial communities, their
determinants (e.g., human milk oligosaccharides), and their downstream byproducts must
first be understood. As the fecal oligosaccharide profile is essential to a comprehensive
understanding of the nursing infant gut ecosystem due to the selective pressures it exerts,
the impact of freeze-drying on the milk-derived oligosaccharide profile of infant fecal
samples was tested. Encouragingly, the data showed oligosaccharide profiles were not
influenced by the lyophilization process.

As marker gene amplicon sequencing is the méthode de jour for studying microbial
ecology in a high-throughput manner, we applied the method to matched freeze-dried
and control samples. The goal was to investigate whether freeze drying produced any
systematic bias in the detected relative abundance of different bacterial taxa. As expected
for mostly breast-fed infants of approximately 1 year of age, the bacterial communities in
these infants was dominated by bifidobacteria and Bacteriodes, with an appreciable presence
of Lachnospiraceae (Fallani et al., 2011; Azad et al., 2013; Bergstrim et al., 2014). While the
ANOSIM results showed that the variation in community structure between conditions
was much lower than the variation between infants, there were some differences between
freeze-dried and wet feces. We found differences in the two treatments, consistent with Ruiz
et al., who found increases in RFLP (Restriction Fragment Length Polymorphism) band
brightness in some bands after lyophilizing feces, suggesting an increase in the recovery of
DNA from some species, and not others (Ruiz ¢ Rubio, 2009).

At first glance, differences in cell wall structure appear to be a possible driver of the
differences in our data. The Gram-negative Bacteroides was over-represented in lyophilized
feces, while Gram-positive bifidobacteria and bacilli were comparatively under-represented.
Measured Bacteroides and bifidobacterial abundances have previously been shown to be
sensitive to variation in extraction method (Milani et al., 2013; Wesolowska-Andersen et
al., 2014). As our data is based on relative abundances, the increase in the detection of
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one species would be read as a concomitant decrease in the abundances of all other
species. However, the inclusion of the spore-forming Gram-positive Oscillospira with taxa
more abundant in lyophilized feces and the Gram-negative Pseudomonas with taxa more
abundant in wet feces casts doubt on cell morphology as the main driver of detection
differences between conditions. It should be noted, however, that the taxomonic level at
which these two taxa were discriminative was narrower than the previously mentioned
groups, suggesting the existence of genus-level (or lower) explanations for the effects

of lyophilization on these taxa. Notably, Oscillospira and Pseudomonas were also minor
members of the community. Mechanistic explanations on the cause of these minor
differences observed between freeze-dried and non-freeze-dried samples remain elusive
and warrant further study. Regardless of mechanism, such differences must be considered
when performing studies of microbial communities from lyophilized feces.

We also investigated the unstudied issue of the appropriate amount of lyophilized sample
to load into commercial DNA extraction kits. Manufacturer’s instructions often direct that
a set mass (or range of masses) of sample to be used, but to the best of our knowledge,
no manufacturer tests or validates their kit on lyophilized fecal samples. The appropriate
amount of sample to use is unclear, as (for example) 100 mg of fresh feces is not equal to
100 mg of freeze-dried feces, due to the concentration of other sample constituents induced
by water loss during the freeze-drying process. Due to concerns about overloading the ZR
Fecal DNA Miniprep kits with a concentrated freeze-dried sample (either biasing the lysis
of cells or overwhelming the binding capacity of the DNA purification column) we also
tested a mass correction procedure. The data also showed that there were no appreciable
differences in the relative abundances of taxa detected from DNA extracted from the
high-mass (no correction for concentration of feces during freeze-drying) and low-mass
(correction applied) lyophilized samples. This data provides support for the use of lower
amounts of lyophilized feces in similar future studies. As we encountered difficulty fully
re-hydrating several of the high-mass samples with the default amount of lysis buffer, it is
recommended to use mass-adjusted freeze-dried samples for that reason alone.

Although this study contributes knowledge on the effect of lyophilization on marker
gene sequencing and oligosaccharide profiles, a few caveats must be noted. First, this
study was performed with infant fecal samples and with a single method each of DNA
and oligosaccharide extraction. Studies using other types of biological samples or other
oligosaccharide and DNA extraction methods may or may not develop the same results.
Second, there is no reason to think that the measurements from wet feces are more
accurate than those from freeze-dried feces. It is unknown whether the DNA obtained after
lyophilization might be more representative of the community than that from wet DNA. If
the extraction efficiency of previously under-represented species is increased, the profiles
from lyophilized feces might be preferred.

CONCLUSION

While some differences in the microbial community measures of freeze-dried and wet
feces were apparent, the effect size was small, and differences between absolute and
relative oligosaccharide abundances were not significant. Individual microbial community
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variation between samples was still readily apparent from lyophilized fecal matter. The
decision to utilize freeze-dried samples or not is hypothesis-dependent and must be made
with caution. Comparing within a sample set of all freeze-dried samples would eliminate
any treatment effects of lyophilization on measures of microbial communities, however
further study is needed to identify the mechanism of bias introduction and thus predict the
impact of this sample treatment. Comparisons of microbial communities where one sample
set was freeze-dried and the other fresh, must acknowledge the differences introduced by
sample processing which could introduce error and bias conclusions. The ZR Fecal DNA
Miniprep kit used in this study appears to maintain unbiased DNA extraction under
the increased inputs of freeze-dried samples where the concentration of samples is not
accounted for. However, due to the limited sample quantity available in many studies, we
imagine most researchers will wish to reduce sample mass used for DNA extraction to the
equivalent amount of wet sample, as the results appear nearly identical.

In summary, our results show that lyophilization is unlikely to obscure major differences
in microbial community structure and oligosaccharide content between classes of
samples and thus is an acceptable method of sample preservation for the purposes of
studying microbial communities and milk oligosaccharide profiles in infants from remote
locations. However, its limitations must still be considered when drawing conclusions.
Numerous different fields of research are recognizing the importance of interrogating
diverse ecosystems and environments and people that are not as easily accessible to the
researchers in Western, Educated, Industrialized, Rich, and Democratic (“WEIRD”)
countries (Henrich, Heine ¢» Norenzayan, 2010). Additional exploration of other potential
sample preservation methods will further inform best practices for sample integrity;
however, consideration must be given to the practicalities of sample collection and
preservation in areas with limited access to the funds and material necessary to implement
these best practices. The techniques described in this study can aid in diversifying the
sample sets and cohorts of infants from which samples may be obtained due to the
minimal maintenance needed by freeze-dried samples. The additional perspective gained
from the study of infants from different environmental contexts is key to understanding
the early stages of human co-development with our microbiota.
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