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Abstract
Background Glycoproteomics deals with glycoproteins that are formed by post-translational modification when sugars (like 
fucose and sialic acid) are attached to protein. Glycosylation of proteins influences function, but whether glycosylation is 
altered by diet is unknown.
Objective To evaluate the effect of consuming a diet based on the Dietary Guidelines for Americans on circulating glyco-
proteins that have previously been associated with cardiometabolic diseases.
Design Forty-four women, with one or more metabolic syndrome characteristics, completed an 8-week randomized con-
trolled feeding intervention (n = 22) consuming a diet based on the Dietary Guidelines for Americans (DGA 2010); the 
remaining consumed a ‘typical American diet’ (TAD, n = 22). Fasting serum samples were obtained at week0 (baseline) 
and week8 (post-intervention); 17 serum proteins were chosen for targeted analyses. Protein standards and serum samples 
were analyzed in a UHPLC-MS protocol to determine peptide concentration and their glycan (fucosylation or sialylation) 
profiles. Data at baseline were used in correlational analyses; change in proteins and glycans following intervention were 
used in non-parametric analyses.
Results At baseline, women with more metabolic syndrome characteristics had more fucosylation (total di-fucosylated 
proteins: p = 0.045) compared to women with a lesser number of metabolic syndrome characteristics. Dietary refined grain 
intake was associated with increased total fucosylation (ρ = − 0.530, p < 0.001) and reduced total sialylation (ρ = 0.311, 
p = 0.042). After the 8-week intervention, there was higher sialylation following the DGA diet (Total di-sialylated protein 
p = 0.018, poly-sialylated orosomucoid p = 0.012) compared to the TAD diet.
Conclusions Based on this study, glycosylation of proteins is likely affected by dietary patterns; higher sialylation was asso-
ciated with a healthier diet pattern. Altered glycosylation is associated with several diseases, particularly cancer and type 2 
diabetes, and this study raises the possibility that diet may influence disease state by altering glycosylation.
Clinical trial registration NCT02298725 at clinicaltrials.gov; https:// clini caltr ials. gov/ ct2/ show/ NCT02 298725.
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TAD  Typical American Diet
UHPLC-MS  Ultra-high performance liquid chromatog-

raphy-mass spectrometry
ASA24  Automated self-administered 24 h dietary 

recall system
HEI  Healthy eating index
ApoD  Apolipoprotein D
ApoCIII  Apolipoprotein CIII
ANT  Angiotensinogen
A2MG  Alpha-2-macroglobulin
A1AT  Alpha-1-antitrypsin
AGP1  Alpha-1-acid glycoprotein/orosomucoid
A2HSG  Alpha-2-Heremans Schmid Glycoprotein
CFAI  Complement Factor I
Ceru  Ceruloplasmin
Fib  Fibronectin
Hemo  Hemopexin
KLKB1  Kallikrein
KNG1  Kininogen
VTNC  Vitronectin

Introduction

The Dietary Guidelines for Americans (DGA), a resource 
that guides what constitutes a healthy diet, is aimed at pre-
venting chronic illnesses [1]. These guidelines have only 
been tested twice in a controlled feeding setting, which 
is considered the gold standard in nutrition research [2]. 
Schroeder et.al. evaluated the effect of consuming a DGA-
based diet for 4-weeks on circulating lipids and glucose [3]. 
We recently evaluated the effect of consuming a DGA based 
diet for twice that duration (8 weeks) on insulin resistance 
and circulating lipids [4]. Neither study reported changes in 
their primary lipid or glucose metabolism outcomes related 
to cardiometabolic health. While recent efforts have focused 
on identifying metabolomics-based biomarkers of healthy 
dietary patterns in large-scale epidemiological studies [5], 
no study to date has reported changes in metabolomics bio-
markers following a controlled feeding trial of the Dietary 
Guidelines for Americans. Metabolomics, the study of small 
molecules, has become an important aspect of understanding 
the impact of diet on health, not to mention a key approach 
to achieving precision nutrition [6]. Both lipidomics and pro-
teomics have recently become popular in nutrition research 
[7]. In the current report, we used targeted glycoproteomic 
analyses, a branch of proteomics that measures glycoproteins 
(proteins with sugars or glycans bonded to specific amino 
acid residues), to evaluate selected serum proteins that are 
associated with cardiometabolic disease risks.

The glycoproteome, which encompasses the profile of 
glycans and their protein sites, is a result of post-transla-
tional modification (PTM) of proteins. PTM is an important 

cellular process that begins in the Golgi body and ends in 
the endoplasmic reticulum (ER) [8, 9], influencing various 
aspects of protein folding and function as well as protein 
trafficking pathways [10]. Glycoproteins are crucial to a 
host of cellular mechanisms, all of which are related to the 
maintenance of health including cell signaling, protein rec-
ognition, and promotion or inhibition of endocytosis [11]. 
The perturbation of any of these processes can lead to the 
development of metabolic diseases [12, 13]. The glycopro-
teome has been recognized in the past decade to be involved 
in several diseases, including cancer, type 2 diabetes [14], 
neurodegenerative disease, and chronic metabolic diseases 
[15]. Sialylated (the addition of 9-carbon sugar: e.g., neu-
raminic acid, as a terminal glycan) and fucosylated (addition 
of 5-carbon fucose as a terminal glycan) proteins are being 
investigated as primary players in discriminating between 
diseased and healthy states. Fucosylated proteins have 
recently begun to be used as biomarkers for specific types 
of cancers [16], and the inter-individual variability in sia-
lylated glucose transporter proteins has recently been asso-
ciated with plasma glucose control [14]. Sialylated proteins 
play crucial roles in innate immunity ranging from antigen 
detection to maintaining the balance between suppression 
or activation of immune responses [17]. In two previous 
observational studies, we evaluated associations between 
glycosylation of HDL-associated proteins and coronary 
artery disease, chronic renal disease, or metabolic syndrome 
[18, 19]. We reported that greater sialylation of proteins was 
associated with reduced severity of metabolic disease [19].

Even though the glycoproteome is being studied in cancer 
biology and immunology, the effect of diet on these glycans 
has not been evaluated thus far. To address this knowledge 
gap, we chose to leverage a controlled feeding clinical trial 
completed at the Western Human Nutrition Research Center 
in 2018 (NCT02298725 at clinicaltrials.gov). In this report, 
we present glycoproteome data at baseline (before the inter-
vention began) in women who had one or more characteris-
tics of metabolic syndrome, as well as following an 8-week 
controlled feeding intervention where the women either fol-
lowed a diet based on the Dietary Guidelines for Americans 
2010 (DGA) or a typical American diet (TAD). Women with 
metabolic syndrome were chosen because this condition is 
coincident with increased risk for type 2 diabetes and cardio-
vascular mortality [20]. Further, the etiology and pathogenic 
manifestations of metabolic syndrome are different between 
the sexes. Based on NHANES data between 1988 and 2006, 
age-adjusted rates for the prevalence of metabolic syndrome 
in the U.S. increased more in women (by 6%) compared to 
men, suggesting women are at higher risk [21]. An 8-week 
intervention was chosen as an optimal duration to evaluate 
the effect of the dietary pattern, in the absence of energy 
deficit or weight loss, even though lipid changes might show 
up after 3–4 weeks [22], hemoglobin A1c would require 
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at least 8 weeks to show significant changes [23]. The two 
aims that will be addressed in this report are the following: 
(a) to establish associations between baseline habitual diet, 
clinical characteristics, and glycome profile of select serum 
proteins that have been associated with chronic metabolic 
diseases; and (b) to identify the effect of an 8-week exposure 
of a DGA or TAD diet on the serum glycoproteome profile 
of women at-risk for metabolic disease.

Methods

Clinical trial overview

The clinical trial from which this report originates is reg-
istered as NCT02298725 at clinicaltrials.gov. Details 
regarding recruitment, place of study, randomization, 
inclusion, and exclusion criteria for participants, blinding, 
and description of primary and secondary endpoints have 
been published [4]. The study was conducted at the USDA/
ARS-Western Human Nutrition Research Center (WHNRC) 
on the campus of the University of California Davis (UC 
Davis). The study was approved by the UC Davis Institu-
tional Review Board. Participants provided written informed 
consent for participating in the study (IRB approval number: 
648620-12).

Study participants

Forty-four women (age 20–65 years) with BMI between 25.1 
and 39.9 kg/m2, resting blood pressure ≤ 140/90 mm Hg, and 
one or more characteristics of metabolic syndrome (fasting 
glucose ≥ 100 and < 126 mg/dL; oral-glucose-tolerance test 
(OGTT) 2-h glucose > 140 and < 199 mg/dL; Quantitative 
Insulin Sensitivity Check Index (QUICKI) score < 0.315, 
homeostasis model assessment (HOMA) > 3.67, or log 
HOMA > 0.085; or HbA1c ≥ 5.7 and < 6.5) were recruited 
and enrolled in this double-blind randomized (block rand-
omization, blocks of 2, with a 1:1 allocation ratio) 8-week 
controlled feeding clinical trial and completed the interven-
tion. Of the 44, 22 women were in a group that was given 
a diet based on the Dietary Guidelines for Americans 2010 
(DGA group), and the remaining 22 consumed a diet that 
resembled a typical American diet (TAD group) based on 
National Health and Nutrition Examination Survey data. 
Women were tested before and after the feeding trial, and 
fasting serum samples were used in the current report.

A brief overview of the dietary intervention

In-depth information about the diet intervention including 
individual day menus are published in a methods manuscript 
outlining the process of designing, blinding the intervention 

from participants, and delivering the diets in this randomized 
controlled intervention [24]. Briefly, the energy balanced 
diets were designed to fit into one that matches the DGA pat-
tern (2.3 cups fruits, 3.5cups of vegetables, 2.8 oz of whole 
grains, 2.4 oz of refined grains, 1.1 oz of seafood, 3.4 oz of 
meat, poultry and eggs, 0.8 oz of nuts and seeds, 3.3 cups of 
dairy and 15% total energy intake from solid fats and added 
sugars), and another that matches a TAD pattern (1 cup of 
fruits, 1.5 cups of vegetables, 1.1 oz of whole grains, 5.7 oz 
of refined grain, 0.6 oz of seafood, 5.4 oz of meat, poultry 
and eggs, 0.5 oz of nuts and seeds, 1.5 cups of dairy and 
33% of total daily energy intake from solid fats and added 
sugars). Blinding of the menus for participants was achieved 
by ensuring that the same food components and dishes were 
used in both diets, from the same core set of foods, so neither 
diet would distinctly resemble a TAD or DGA based diet. 
Different compositions of the same core foods were used 
to match the diet patterns and were designed to be 8-day 
cyclic menus by the study dietitian. Participants did not have 
information on the diet assigned, and even while consuming 
food at the research center (which happened a minimum of 
twice a week), they were chaperoned by study staff and did 
not interact with other study participants.

Study diet composites were prepared by pooling and 
blending (by intervention) and were used in proximate 
analyses to verify that the designed diet did meet require-
ments to match the DGA and TAD patterns. Study partici-
pants received all foods and drinks to consume for 8 weeks 
they were enrolled in the intervention. All food and drinks 
were prepared and packaged in the metabolic kitchen at 
the WHNRC where the study was conducted. Participants 
picked up packed meals from the WHNRC, twice a week 
when they visited the center. They were given specific 
instructions to refrigerate or freeze appropriate foods till 
it is time for consumption. Dietary adherence was moni-
tored using checklists that participants turned in for each 
day during these bi-weekly visits. These checklists were 
pre-made for each day by study staff, to include a list of 
foods provided to the participant for each study day, along 
with space to answer the following questions: ‘time of meal’, 
‘% food consumed’, ‘medications consumed’, and ‘notes’ 
to add any open-ended comments. A sample study check-
list is provided in Supplemental Table 1. They were also 
instructed not to clean their dishes once they consumed each 
food or drink, and were asked to return containers as is, 
which were weighed at the WHNRC metabolic kitchen, to 
evaluate adherence to protocol. Based on both self-reported 
checklists, weigh backs, as well as 24-h urinary nitrogen 
measurements (measures taken at week 1, week 4, and week 
7 of the intervention), adherence to the provided diet was 
between 80 and 95%, as reported in depth in the methods 
manuscript, along with more details about the menu and 
foods included as well [24].
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Healthy Eating Index (HEI) scores

Habitual dietary intake information of each participant was 
obtained before the feeding intervention began using the 
Automated Self-Administered 24-h dietary (ASA24) recall 
system [25]. Dietary recalls were done four times (since 
a minimum of three is considered optimal to accurately 
estimate energy intake [26]) once during in-house train-
ing when the participant is oriented into the study, twice 
unannounced over weekday days, and once unannounced 
over the weekend. All recalls happened within 4 weeks 
of when the participant was enrolled in the intervention. 
Data were averaged across all days of collected recalls, and 
all participants had at least 2 weekdays and one weekend 
recalls. The Healthy Eating Index (HEI-2015) components 
and total scores were calculated per individual across all 
days of ASA24 recalls, using publicly available statistical 
codes developed to standardized the calculation of the HEI 
according to guidelines set by the USDA [27].

Glycopeptide measurement

Measured peptides

A total of 17 serum proteins were chosen to be measured 
using targeted MS analyses. Table 1 provides a list of these 
peptides, along with a summary of their reported associa-
tions with cardiometabolic disease which formed the prem-
ise of why they were chosen. Briefly, these peptides have 
previously been shown to be linked to inflammation, hyper-
tension, dyslipidemia, or dysglycemia. All protein standards 
were obtained from Sigma-Aldrich (Millipore Sigma- Merck 
KGaA, St. Louis, Missouri).

Sample preparation

10-μL serum samples and glycoprotein standards were 
reduced with 40 μL 25 mM DTT (Promega, WI) at 60 °C for 
50 min, followed by alkylation with 20 μL 90 mM iodoacet-
amide (IAA) (Millipore Sigma, MO) in the dark for 30 min 

Table 1  Proteins chosen to be measured, and a brief introduction about their implicated role in cardiometabolic disease

Serum protein Implicated role in cardiometabolic disease

Angiotensinogen (ANT) Involved in blood pressure regulation (Corvol P et al. 1984, J.Hypertens Suppl. Dec;2(2):S25-30)
Alpha-2-Heremans Schmid Glyco-

protein (A2HSG)
Level of glycosylation indicative of metabolic syndrome (Krishnan S et al. 2017, https:// doi. org/ 10. 1038/ 

srep4 3728)
Kallikrein (KLKB1) Regulates blood pressure (Sharma JN and Narayanan P 2014, https:// doi. org/ 10. 1007/ 978-3- 319- 06683-

7_2)
Hemopexin (Hemo) Influences angiotensin responsiveness in humans, indirectly regulating blood pressure (Krikken JA et al., 

2013, https:// doi. org/ 10. 1097/ HJH. 0b013 e3283 5c1727)
Kininogen-1 (KNG1) Deficiency increases salt sensitivity induced increase in blood pressure (Majima M et al. 1993, https:// doi. 

org/ 10. 1161/ 01. hyp. 22.5. 705)
Alpha-1-anti-trypsin (A1AT) Deficiency decreases CVD risk (Fahndrich S et al. 2017,  https:// doi. org/ 10. 1186/ s12931- 017- 0655-1.), 

dysfunction associated with ischemic stroke risk (Mahta A et al. 2020, https:// doi. org/ 10. 1016/j. jocn. 
2020. 04. 074)

Alpha-2-macroglobulin (A2MG) A2MG intricately linked to balance in inflammatory response (Borth W, 1992, 10.1096/
fasebj.6.15.1281457)

Alpha-1-acid glycoprotein (AGP1) Altered glycosylation involved in anti-inflammatory response (Chavan MM et al., 2005, https:// doi. org/ 10. 
1093/ glycob/ cwi067)

Vitronectin (VTNC) Serum concentrations predictive of metabolic syndrome (Alessi MC et al., 2011, https:// doi. org/ 10. 1160/ 
TH11- 03- 0179)

Ceruloplasmin (Ceru) Elevated serum concentrations in metabolic syndrome and associated with various CVD risk factors (Kim 
CH et al., 2002,  https:// doi. org/ 10. 1053/ meta. 2002. 33348)

Fibronectin (Fib) Low levels associated with increased risk for coronary heart disease (Zhang et al., 2006,  https:// doi. org/ 10. 
1515/ CCLM. 2006. 008)

Apolipoprotein CIII (ApoCIII) Lipoprotein associated with hypertriglyceridemia (Ramms B and Gordts PLSM, 2018, https:// doi. org/ 10. 
1097/ MOL. 00000 00000 000502)

Apolipoprotein D (ApoD) Intricately involved in lipid metabolism in ageing and atherosclerosis (Perdomo G and Dong HH, 2009, 
https:// doi. org/ 10. 18632/ aging. 100004)

Complement C5 Immune mechanisms in blood pressure regulation, as one of the earliest discovered components of immune 
system, it plays a role in hypertension (Wenzel UO et al., 2017, https:// doi. org/ 10. 1152/ ajphe art. 00759. 
2016)

Complement C2
Complement C4 A and B
Complement Factor I

https://doi.org/10.1038/srep43728
https://doi.org/10.1038/srep43728
https://doi.org/10.1007/978-3-319-06683-7_2
https://doi.org/10.1007/978-3-319-06683-7_2
https://doi.org/10.1097/HJH.0b013e32835c1727
https://doi.org/10.1161/01.hyp.22.5.705
https://doi.org/10.1161/01.hyp.22.5.705
https://doi.org/10.1186/s12931-017-0655-1
https://doi.org/10.1016/j.jocn.2020.04.074
https://doi.org/10.1016/j.jocn.2020.04.074
https://doi.org/10.1093/glycob/cwi067
https://doi.org/10.1093/glycob/cwi067
https://doi.org/10.1160/TH11-03-0179
https://doi.org/10.1160/TH11-03-0179
https://doi.org/10.1053/meta.2002.33348
https://doi.org/10.1515/CCLM.2006.008
https://doi.org/10.1515/CCLM.2006.008
https://doi.org/10.1097/MOL.0000000000000502
https://doi.org/10.1097/MOL.0000000000000502
https://doi.org/10.18632/aging.100004
https://doi.org/10.1152/ajpheart.00759.2016
https://doi.org/10.1152/ajpheart.00759.2016
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at room temperature, and 60 μL of 0.067 μg/μL trypsin solu-
tion (Promega, WI) was added to the mixture. The tryptic 
digestion was performed in a water bath at 37 °C for 18 h. 
After the incubation, the reaction was quenched with 10 μL 
of 18% formic acid.

Instrument analysis

Tryptic digested samples were directly characterized using 
an Agilent 1290 infinity ultrahigh-pressure liquid chroma-
tography (UHPLC) system coupled with an Agilent 6490 
triple quadrupole (QQQ) mass spectrometer (Agilent Tech-
nology, Santa Clara, CA). 2 μL of the sample was injected, 
and the analytes were separated on an Agilent Eclipse plus 
C18 (RRHD 1.8 μm, 2.1 mm × 150 mm) analytical column 
coupled to an Agilent Eclipse plus C18 (RRHD 1.8 μm, 
2.1 mm × 5 mm) guard column. A solution of 3% acetoni-
trile/97% water (E-pure filtered water) containing 0.1% 
formic acid and 90% acetonitrile/10% waster containing 
0.1% formic acid were used as solvents A and B, respec-
tively (acetonitrile (Honeywell, NJ), formic acid (Fisher 
Scientific, MA)). The chromatography gradient consisted 
of 0–20% solvent B over 0–20 min, 20–44% solvent B over 
20–47 min, 44–100% solvent B over 47–51 min, and hold-
ing at 100% solvent B for 51 min to 64 min. The flow rate 
was set to 0.5 mL/min. Peptides and glycopeptides were 
monitored using a dynamic multiple reaction monitoring 
(dMRM) mode based on the transitions reported as the pre-
vious method [28].

Data processing

The acquired dMRM data were analyzed with Agilent Mass-
Hunter Quantitative Analysis B.8.0 software. Signal-to-noise 
ratio (S/N) of 3 was chosen for the limit of detection, and 
S/N of 6 was selected as the threshold for the limit of quan-
titation. Peak areas acquired from the software were used 
for quantitation. For the standard protein quantitation, the 
linear curve was determined by evaluating the concentration 
range where the signal varies linearly with the concentra-
tion. The amount of each glycopeptide was quantified as the 
intensity of each glycopeptide divided by its corresponding 
unglycosylated peptide.

Statistical analyses

The sample size and power were based on the primary end-
point fasting insulin and are described elsewhere [4]. Briefly, 
with 17 participants/group, the study was powered to detect 
a 5.3-mIU/mL difference in insulin (the primary outcome 
variable for the study), at a 5% level of significance using 

a 2-tailed test. This translated to a 0.75 effect size. Adding 
an attrition rate of 20%, the study sample became 22/group.

Data analysis

Mol% for sialylated and fucosylated peptides were calcu-
lated for each peptide as a ratio of individual sums of mono-, 
di- or poly- glycosylated peptides to that of the total peptide. 
Total peptides, individual glycopeptides as well as mol% 
glycopeptides were used in subsequent analyses [19]. To 
avoid issues with non-conformity of data to a normal dis-
tribution, non-parametric tests were used for uni- and bi-
variate analyses, where possible. Several parameters were 
not able to be transformed to fit the normal distribution 
assumptions. For univariate analyses, screening for outli-
ers was done using Huber and Cauchy tests, and variables 
were transformed (Johnson transforms) to address outliers. 
Mahalanobis distance test was used to verify multivariate 
normal distribution before use in multivariate statistical 
analyses.

Baseline profiling of the glycoproteome parameters

Correlation analyses (Spearman’s rho) were used to evalu-
ate associations between habitual dietary intake, clinical 
parameters, and the glycoproteome parameters. Further, 
participants were divided into subgroups based on (a) men-
opausal status, since type and extent of glycosylation are 
influenced by this [29] [pre (n = 23) vs. post, (n = 21)]; (b) 
based on the number of metabolic syndrome characteristics 
they had [dyslipidemia (DL—characterized by low HDL-c, 
high LDL-c, high TG, or high TC; n = 18), or dyslipidemia 
and glucose intolerance (DL + GIT- in addition to dyslipi-
demia, high fasting glucose, or high 2 h glucose following 
an oral glucose tolerance test); n = 26]; and (c) based on their 
BMI status (overweight OW; n = 15 vs. obese OB; n = 29). 
Non-parametric van der Waerden’s tests were used to com-
pare glycoproteomic parameters between these subgroups, 
followed by Benjamini–Hochberg multiple comparison 
corrections.

Effect of the dietary intervention 
on the glycoproteome parameters

Differences between fasting data obtained at baseline week 
(wk0) and following the 8-week intervention exposure 
(week8) were calculated for all data. Non-parametric van 
der Waerden’s tests were used to compare changes due to 
exposure to the diet between DGA and TAD groups, and 
Benjamini–Hochberg multiple comparison corrections. 
Transformed (Johnson transformed) ‘change’ data were used 
in a PLS-DA model to evaluate the discriminatory ability of 
change in clinical and glycoproteomic parameters to describe 
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the effect of the intervention, while also identifying clinical 
and glycoproteomic parameters that covary. The PLS-DA 
model, a variation of the PLS regression, was chosen as 
opposed to a PCA. The PLS model is supervised (i.e. it can 
be trained to ‘learn’ the difference between groups) and vali-
dated, unlike the PCA, while retaining the ability to derive 
inference from the covariance matrix of X and Y variables 
to signal which variables covary, similar to PCA. It is espe-
cially useful when there is a greater number of variables than 
cases (i.e. wide data) and when the variables have a high 
degree of inter-correlatedness. The PLS-DA model was built 
to predict Group (DGA vs. TAD) as the dependent variable 
using change in mol% glycoproteomic, anthropometric, and 
clinical measures as independent variables. Leave-one-out 
cross-validation was used since the sample size was small, 
this was not computationally intensive, and this is better than 
hold-back since it has less bias in the regression coefficients 
[30] to verify the validity of the built models. Q2 (goodness 
of prediction) and R2 (coefficient of multiple determination) 
values were used to evaluate the goodness of fit. Independent 
variables that were important contributors to differentiating 
between the groups—DGA and TAD, were identified using 
a variable importance plot (VIP) with a VIP cut-off score 
of > 1. All data analyses were done in R (version 3.6.0) and 
JMP Pro 14.1 (SAS Institute, Cary NC).

Results

Associations between baseline clinical 
characteristics and glycoproteome

The glycovariants that are significantly different at week 0 in 
the 44 participants separated into subgroups based on their 
metabolic syndrome status, menopausal status, and BMI 
status are depicted in Fig. 1 in panels A, B, and C. VTNC 
mono-sialylated proteins were higher in women with both 
dyslipidemia (DL) and glucose intolerance (GIT) (Panel A) 
compared to women with only DL (p = 0.015), while poly-
sialylated proteins were higher in women with DL alone 
compared to both DL + GIT (p = 0.015). Ceru mono-fuco-
sylated peptides were in greater abundance in women with 

DL + GIT compared to women with DL alone (p = 0.017). 
Total di-fucosylated proteins were also higher in DL + GIT 
compared to women with DL alone (p = 0.045). Based on 
these, an overall profile of higher sialylation being associ-
ated with having fewer metabolic syndrome characteristics 
emerges.

Vitronectin mono-sialylated proteins were higher in 
postmenopausal women (see Fig. 1 Panel B) compared to 
premenopausal women (p = 0.037), while poly-sialylated 
proteins were lower (p = 0.036). Total poly-fucosylated 
proteins were higher in pre-menopausal women compared 
to postmenopausal women (p = 0.007), while there was a 
trend toward total di-fucosylated proteins being higher in 
postmenopausal women compared to premenopausal women 
(p = 0.051).

Non-sialylated KLKB1 was higher in overweight women 
(see Fig. 1 Panel B) compared to obese (p = 0.036), as were 
mono-fucosylated KLKB1 (p = 0.040), non-fucosylated 
KLKB1 (p = 0.040), and total mono-sialylated proteins 
(p = 0.036). On the contrary, poly-sialylated KLKB1 was 
higher in obese compared to overweight women (p = 0.045), 
as were total non-fucosylated proteins (0.034), and total 
mono-fucosylated were higher in overweight women 
(0.054).

Associations between baseline habitual diet 
and glycoproteome

Correlation analyses at baseline revealed associations 
between baseline diet quality indices and glycovariant 
mol% (see Fig. 2 and Supplemental Table 2). Total non-
fucosylated glycovariant proteins were positively associated 
with sub-scores representing ‘total vegetable’, ‘greens and 
beans’, and ‘refined grain’ intake. Total poly-fucosylated gly-
covariant mol% was inversely associated with ‘total score’ 
(healthy eating index, HEI), ‘refined grain’, and ‘seafood 
and plant protein’ intake. Total non-sialylated proteins were 
inversely associated with ‘total dairy’ and ‘refined grain’ 
while total poly-sialylated proteins were positively associ-
ated with ‘refined grain’ score. A healthy diet pattern that 
includes more vegetables, more seafood, and reduced refined 
grain appears to be associated with greater poly-sialylated 
proteins, while higher fucosylation appears to be associated 
with a less healthy diet.

Change in glycoproteome related to controlled diet 
intervention

The change in total kininogen concentration was more posi-
tive (Fig. 3) in TAD compared to the DGA group. Change 
in total di-sialylated proteins was higher in DGA compared 
to the TAD group, as was poly-sialylated A2MG protein, 
poly-sialylated AGP-1, and non-fucosylated AGP-1. Mol% 

Fig. 1  All significantly different glycovariant mol% of individual or 
total peptides arranged within each panel from left to right in increas-
ing order of glycosylation (none-mono-di-poly). Box and whisker 
plots showing the median ± interquartile range values, with p-values 
inset. Panel A shows differences based on screening characteristics—
DL = dyslipidemic (n = 18), DL + GIT (n = 26) = dyslipidemic + glu-
cose intolerant. Panel B presents differences between pre (n = 23- and 
post-menopausal women (n = 21). Panel C shows differences between 
overweight (OW—BMI between 25 and 30 kg/m2, n = 15) and obese 
(OB, BMI between 30 and 40 kg/m2, n = 29) individuals. VTNC Vit-
ronectin, CERU ceruloplasmin, TOTAL all peptides together, KLKB1 
Kallikrein, sialyl—sialylated, fucosyl fucosylated

◂
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poly-sialylated Ceru protein change was more positive in 
TAD compared to DGA, similar to Ceru mono-fucosylated. 
Mol% total non-sialylated protein change was higher in TAD 
compared to the DGA group.

The PLS-DA model based on the change in clinical, 
anthropometric, and glycoprotein variables is depicted in 
Fig. 4. The PLS-regression represents 69% (R2X) of the 
variance in the X variables (independent variables) and 
85% (R2Y) of the variance in the Y variable (Group—DGA 
vs TAD). The Q2 was 0.80, and the model had 32 vari-
ables that had a VIP score of > 1. The scores plot shows 
the separation of the groups (DGA = orange, TAD = grey). 
The corresponding loadings plot, when considered along 
with the VIP plot suggests that the TAD group (grey) is 

characterized by colinear changes in TG, SBP, QUICKI, 
LDL-c, LDL: HDL ratio, waist-hip ratio, KNG-1, CFAI, 
ApoC3, mono-fucosylated—Fetuin, ApoD, ApoC3, 
mono-sialylated Apo C3, non-fucosylated—ANT, ApoD, 
A2MG, non-sialylated total proteins, and di-fucosylated 
total proteins. The DGA group (orange) was character-
ized by colinear changes in HOMA-IR, Matsuda index, 
total A2MG, total ANT, total di-sialylated proteins, poly-
sialylated—AGP1, ANT, A2MG, di-sialylated—total pro-
teins, non-fucosylated—AGP1, mono-sialylated -A2MG, 
mono-fucosylated—A2MG, and non-sialylated—A2MG. 
Overall, more glycoproteomic variables were involved in 
explaining the difference between DGA and TAD com-
pared to clinical parameters.

Fig. 2  Correlation based significant associations between glycovari-
ant mol% (y-axis) and HEI sub-category scores (x-axis) with inset 
Spearman’s rho (ρ) and p values. For total vegetables, greens and 
beans, seafood and plant proteins, total dairy and total score higher 

score reflects both higher intake of these food groups and a ‘healthy’ 
diet. For refined grain a higher score indicates lower intake and a 
‘healthy’ diet
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Discussion

To our knowledge, this is the first time the effect of diet 
on the serum glycoproteome profile has been evaluated, 
both in the form of association with habitual diet and as a 

result of change induced by a controlled feeding interven-
tion. Women with a greater number of metabolic syndrome 
characteristics had greater fucosylation of proteins. Further, 
a lower refined grain intake was associated with higher sia-
lylation of proteins and reduced fucosylation. The DGA 

Fig. 3  Mol% glycoprotein 
changes (wk8–wk0) comparing 
DGA and TAD groups. Box 
plot represents median + IQR, 
and points show data (there 
were no statistical outliers) with 
p values inset. Only analytes 
with significant diet differences 
(p < 0.05) are depicted here. 
A2MG alpha-2-macroglobulin, 
KNG-1 Kininogen, CERU ceru-
loplasmin, AGP-1 alpha-1-acid 
glycoprotein, sialyl sialylated, 
fucosyl fucosylated, TAD typical 
American diet, DGA Dietary 
guidelines for American diet
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diet increased total di-sialylated proteins, poly-sialylated 
A2MG, and AGP1, and non-fucosylated AGP1. The TAD 
group, on the other hand, showed increased KNG1, and 
poly-sialylated and mono-fucosylated Ceru. Our multivari-
ate analyses revealed change in di- and poly-sialylated and 
non-fucosylated proteins, HOMA-IR and Matsuda index, 
to carry the most group discriminating information among 
variables in the DGA group. In the TAD group, discrimi-
nators were: change in systolic blood pressure, QUICKI, 
LDLc, TG, KNG-1, and mostly non-fucosylated, mono-
fucosylated, and non-sialylated proteins- apoC3, CFAI, and 
ApoD. Even though a previous study reported differences 
in glycosylation based on menopausal status [29], we did 
not see any differences. BMI categories also did not display 
clear differences in the pattern of glycosylation in this study. 
Based on this, an overall profile of the DGA and healthier 
diets being associated with increased sialylation; and less 
nutrient-dense diets being associated with reduced sialyla-
tion/increased fucosylation emerges.

Greater total sialylation and healthier diet pattern

In the current study, there was a positive association between 
poly-sialylated proteins and consuming a healthier diet based 
on the HEI scores. Also, there was an increase in total di-
sialylated protein in the DGA group and a decrease of the 
same in the TAD group. Studies have shown that sialic acid 
can either mask binding sites or make binding sites available 
to receptor ligands [31]. Sialylation is specifically noted for 
its effects on protein half-life, clearance, and functionality 
of proteins, wherein loss of sialic acid is associated with 
reduced half-life and functionality [32]. Polysialic acid in 
particular has been shown to modulate cellular interactions 
of dendritic cells and other agents of innate immune activa-
tion [33], which is intricately linked with the development 
of type 2 diabetes [34], and cardiovascular mortality in indi-
viduals with type 2 diabetes [35]. It is important to note here 
that while there are studies that show that higher circulating 
sialic acid concentration is linked to type 2 diabetes, and its 
downstream vascular pathologies [36], the current report 
focuses on sialic acids bound to proteins, which is a differ-
ent measure. Based on our current report, it appears that the 

DGA diet pattern or a nutrient-dense diet as indicated by 
HEI scores is associated with higher sialylation, and reduced 
fucosylation.

A primary difference between DGA and TAD was in their 
dietary fiber (soluble and insoluble) content: the DGA diet 
had ~ 29 g/day of dietary fiber, while the TAD had ~ 19 g/
day. Dietary fiber, upon fermentation in the large intestine, 
produces short-chain fatty acids (SCFAs—acetate, butyrate, 
and propionate), which can influence several physiological 
functions [37]. Expression of enzymes involved in glyco-
sylation (glycosidases, transferases) can be up or downregu-
lated by epigenetic modifications—acetylation, phosphoryla-
tion, or methylation [38], and this, in turn, influences the 
glycosylation process. Butyrate, a gut microbiota-derived 
SCFA [39] is a known nutritionally derived epigenetic modi-
fier since it is a histone deacetylase inhibitor [40]. Butyrate 
alters erythropoietin glycosylation in Chinese hamster ovary 
cells in vitro [41], and more specifically increased expres-
sion of α 2,6-sialyltransferase resulting in greater sialylation 
of proteins [42–44]. Dietary fat [which was also different 
between DGA (26% of daily energy) and TAD (34% of daily 
energy)] has also been shown to alter glycosylation pattern 
in duodenal cells in mice [45], by altering the gut micro-
biota; however, whether this translates to systemic change 
in glycosylation is not yet clear. These are likely mechanistic 
links by which the diet based on DGA altered the sialylation 
of serum proteins. While it is outside the scope of the current 
study to evaluate these mechanisms, future studies should 
investigate this further.

Individual glycoprotein changes due to intervention

Total KNG1 was elevated in TAD as a result of the interven-
tion, but not in the DGA group. KNG1, when activated by 
KBKB1, has vasodilator and diuretic effects, and knockouts 
of KNG1 result in increased blood pressure responses to salt 
loading [46]. Bovine kininogen and bradykinin have been 
shown to act as vasodilators, and are considered biologically 
active proteins and of interest in the nutraceutical indus-
try [47]. Upon a closer inspection, we observed an inverse 
association between baseline dairy consumption (dairy HEI) 
and total KNG1 (r = − 0.342, p = 0.025). Our DGA group 
went from having a 4.8/10 HEI score for dairy at baseline 
to a 10/10 on the intervention, while the TAD group went 
from a 5.89/10 score at baseline to a 5/10. Based on this, one 
might speculate that the reduction in dairy in the TAD group 
resulted in fewer functional kinins from the diet, making it 
necessary for it to be produced endogenously. This suggests 
that this increase in KNG1 was necessary for maintaining 
blood pressure, which it did in the TAD group since there 
was no change in systolic or diastolic blood pressure. How-
ever, this hypothesis needs further verification.

Fig. 4  Loadings and scores plot of a PLS-DA model generated to pre-
dict ‘Group’ using difference in wk8–wk0 in anthropometric, clini-
cal and glycovariant data. The scores plot (a) shows the participant 
distribution across the n-dimensions is inset within the loadings plot 
(b) which shows the variables (dimensions). In the scores plot (a) the 
black dots represent scores from subjects fed the TAD and orange 
dots represent scores of participants fed the DGA. In both scores and 
loadings plot (b), the orange highlight ellipses represent DGA and 
dark grey ellipses highlight TAD group. c Displays the VIP variables 
with VIP score > 1, which significantly contribute to the model dis-
crimination of DGA and TAD groups, coded with orange for vari-
ables that are associated with change in DGA and black for TAD

◂
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In the current study di-sialylated glycoproteins (AGP1 
and A2MG) increased in DGA, but not in the TAD group. 
AGP1 is an acute-phase protein, whose biological role is 
varied, including binding to leptin receptors to influence the 
energy homeostasis regulatory pathway [48] and as an anti-
inflammatory [49] and anti-platelet aggregating factor [50]. 
AGP1 glycosylation level and type have been documented to 
change in disease states [51]. There was a reciprocal increase 
in sialylation and reduction in fucosylation by 60% in both 
AGP1 and A2MG when acute phase response was triggered 
in rats [52]. In the current study, the increase in sialylation of 
total measured AGP1 suggests a greater inhibition of plate-
let aggregation, which is cardioprotective [53]. A2MG is 
an inhibitor of proteinase activity, it inhibits fibrinolysis by 
inhibiting kallikrein and plasmin, and inhibits coagulation 
by inhibiting thrombin [54]. It is also a potent anti-inflam-
matory agent [55]. Aging is generally associated with more 
pro-inflammatory glycans that are less sialylated [56], and 
the DGA intervention increasing sialylation of A2MG can 
be indicative of reduced inflammation.

Our PLS-DA models indicated covarying HOMA-IR, 
Matsuda index, and di-, poly and non-fucosylated proteins. 
While this agrees with the general trend that the DGA diet 
had increased sialylation, the covarying HOMA-IR and 
Matsuda index is counter-intuitive. Increasing HOMA-IR 
values indicate insulin resistance, and increasing Matsuda 
index values indicate insulin sensitivity. The fact that change 
in these concurrently occur with increased sialylation and 
reduced fucosylation suggests the difference in the mecha-
nism by which the glycovariants affect metabolic health. 
HOMA-IR is a function of fasting plasma insulin and glu-
cose, while the Matsuda index is calculated as a function 
of fasting and post-prandial (following an OGTT) plasma 
insulin and glucose. How increased sialylation and reduced 
fucosylation relates to these different surrogates for insu-
lin effectiveness at the systemic level remains unclear and 
requires further evaluation. A recent study identified reduced 
fucosylation and higher sialylation in individuals with type 2 
diabetes. Further, they reported that it is not the total sialyla-
tion, but the type of sialyl-linkage (alpha-2,3 vs alpha-2,6 
glucosidic bond) that affects the function of the peptide [57]. 
So, how sialylation, which appears to be increasing with the 
DGA diet in the current study, affects risk for type 2 diabetes 
needs further investigation.

Strengths and limitations

Of the total 17 proteins, we only found significant changes 
in four. This could be because of the small sample size, 
or the short duration (8wk) of the study. However, the 
only previous study evaluating the DGA pattern was done 
for 4wk and reported minimal changes in their clinical 

outcomes. Our study was the first-ever 8wk intervention 
to evaluate the DGA diet pattern. A longer duration inter-
vention may show greater changes. Alternately, even if 
the diet had an effect, it could either be small or highly 
variable and may affect each protein differently in differ-
ent individuals, and these will need both larger sample 
sizes and longer duration interventions to evaluate. Yet 
another limitation is that these are secondary analyses 
from a clinical trial, and the primary study was powered 
to detect changes in fasting insulin concentrations. This 
indicates that there is likely inflation of type I error. In the 
current study, a false-positive rate correction was applied 
to ensure that this is being addressed, adding robustness 
to our findings. The use of block randomization leaves the 
study vulnerable to selection bias, since the treatment that 
has not been randomized frequently so far in unmasked 
groups is more likely to be chosen next [58]. While our 
PLS-DA model was used to draw inference and not in a 
predictive capacity, and was validated internally, future 
studies with larger sample sizes and comparing healthy 
vs. diseased populations are needed to verify the find-
ings from this current report. A strength of the current 
study was that the observations noticed in baseline data 
(higher sialylation associated with a healthy diet, higher 
fucosylation with a less healthy diet) were largely aligned 
with what was observed as a result of a controlled feeding 
intervention (greater sialylation following the DGA diet) 
with one exception.

Conclusions and future direction

A majority of mammalian proteins are glycosylated, and 
these processes play important roles in protein function. The 
results of this study suggest that dietary patterns can affect 
post-translational modification, specifically N-glycosylation. 
The current study is the first to show this relationship in 
humans. Given the association between diet and glycan 
composition of proteins we report here, it is important to 
investigate if the serum glycoproteome can be used to iden-
tify biomarkers indicative of dietary patterns. A clinical 
intervention trial comparing diet patterns associated with 
health and disease can be used to evaluate the circulating 
glycoproteome, along with changes in SCFAs and the gut 
microbiome. This would test our proposed mechanism, and 
verify findings currently being reported. One approach to 
precision nutrition is to include nutritional physiology and 
biochemistry knowledge in a systems biology framework 
and to evaluate inter-individual variability through the 
application of comprehensive phenotyping tools. In this 
regard, the glycoproteome is an important addition to the 
armamentarium.
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