Hong, Q., et al. (2014). “Label Free Absolute Quantitation of Oligosaccharides using Multiple Reaction Monitoring.Anal Chem.

An absolute quantitation method for measuring free human milk oligosaccharides (HMOs) in milk samples was developed using multiple reaction monitoring (MRM). To obtain the best sensitivity, the instrument conditions were optimized to reduce the source and post source fragmentation prior to the quadrupole transmission. Fragmentation spectra of HMOs using collision-induced dissociation were studied to obtain the best characteristic fragments. At least two MRM transitions were used to quantify and identify each structure in the same run. The fragment ions corresponded to the production of singly charged mono, di, and tri-saccharide fragments. The sensitivity and accuracy of the quantitation using MRM were determined, with the detection limit in the femtomole level and the calibration range spanning over five orders of magnitude. Seven commercial HMO standards were used to create calibration curves and were used to determine a universal response for all HMOs. The universal response factor was used to estimate absolute amounts of other structures and the total oligosaccharide content in milk. The quantitation method was applied to 20 human milk samples to determine the variations in HMO concentrations from women classified as secretors and nonsecretors, a phenotype that can be identified by the concentration of 2′-fucosylation in their milk.

 

Ozcan, S., et al. (2014). “Serum glycan signatures of gastric cancer.” Cancer Prev Res (Phila) 7(2): 226-235.

Glycomics, a comprehensive study of glycans expressed in biologic systems, is emerging as a simple yet highly sensitive diagnostic tool for disease onset and progression. This study aimed to use glycomics to investigate glycan markers that would differentiate patients with gastric cancer from those with nonatrophic gastritis. Patients with duodenal ulcer were also included because they are thought to represent a biologically different response to infection with Helicobacter pylori, a bacterial infection that can cause either gastric cancer or duodenal ulcer. We collected 72 serum samples from patients in Mexico City that presented with nonatrophic gastritis, duodenal ulcer, or gastric cancer. N-glycans were released from serum samples using the generic method with PNGase F and were analyzed by matrix-assisted laser desorption/ionization Fourier transform-ion cyclotron resonance mass spectrometry. The corresponding glycan compositions were calculated based on accurate mass. ANOVA-based statistical analysis was performed to identify potential markers for each subgroup. Nineteen glycans were significantly different among the diagnostic groups. Generally, decreased levels of high-mannose-type glycans, glycans with one complex type antenna, bigalactosylated biantennary glycans, and increased levels of nongalactosylated biantennary glycans were observed in gastric cancer cases. Altered levels of serum glycans were also observed in duodenal ulcer, but differences were generally in the same direction as gastric cancer. Serum glycan profiles may provide biomarkers to differentiate gastric cancer cases from controls with nonatrophic gastritis. Further studies will be needed to validate these findings as biomarkers and identify the role of protein glycosylation in gastric cancer pathology. Cancer Prev Res; 7(2); 226-35. (c)2013 AACR.